We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Patrice Carbonneau

Woodget, A.S., Carbonneau, P.E., Visser, F. & Maddock, I.P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms 40(1): 47-64.

Author(s) from Durham


Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process-oriented investigations of flow hydraulics, sediment dynamics and in-stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through-water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. While the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM-photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary-winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50–100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM-photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres).