Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Research

View Profile

Publication details for Professor Michael Petty

Jombert, AS, Coleman, KS, Wood, D, Petty, MC & Zeze, DA (2008). Poole-Frenkel conduction in single wall carbon nanotube composite films built up by electrostatic layer-by-layer deposition. Journal of Applied Physics 104(9): 094503.

Author(s) from Durham

Abstract

The fabrication of large area thin films of single wall carbon nanotubes (SWCNTs) using electrostatic layer-by-layer deposition is reported. The in-plane current versus voltage (I-V) characteristics were dependent on the concentration of SWCNTs transferred from the solvents onto the substrates. Solutions with a low SWCNT concentration produced films that exhibited a nonlinear I-V regime. The experimental data fitted with various conduction models indicated that Poole-Frenkel conduction was the dominant mechanism. The temperature dependence of the conductivity also supported this model. Two activation energies were identified-approximately 10 and 20 meV. These were thought to be associated with the surfactant coatings of the nanotubes. Increasing the SWCNT loading in the thin films led to an Ohmic conduction process by virtue of a denser network of conductive paths in the film and conduction via tube to tube contacts.

Notes

Article Number 094503