Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Research

View Profile

Publication details for Professor Michael Petty

Jeong, Y., Pearson, C., Kim, H-G., Park, M-Y., Kim, H., Do, L-M. & Petty, M.C. (2016). Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors. ACS Applied Materials & Interfaces 8(3): 2061-2070.

Author(s) from Durham

Abstract

We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10−7 A/cm2) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm2/(V s), an on/off ratio of ∼107, a threshold voltage of −1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 °C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm2/(V s) and on/off ratio of ∼107.