We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Professor B. Huntley

Poyatos, R., Gornall, J., Mencuccini, M., Huntley, B. & Baxter, R. (2012). Seasonal controls on net branch CO2 assimilation in sub-Arctic Mountain Birch (Betula pubescens ssp. czerepanovii (Orlova) Hamet-Ahti). Agricultural and Forest Meteorology 158-159: 90-100.

Author(s) from Durham


Forests at northern high latitudes are experiencing climate-induced changes in growth and productivity, but our knowledge on the underlying mechanisms driving seasonal CO2 fluxes in northern boreal trees comes almost exclusively from ecosystem-level studies on evergreen conifers. In this study, we measured growing season whole-branch CO2 exchange in a deciduous tree species of the tundra-taiga ecotone, Mountain Birch (Betula pubescens ssp. czerepanovii (Orlova) Hamet-Ahti), at two locations in northern Fennoscandia: Abisko (Sweden) and Kevo (Finland). We identified strong seasonal and environmental controls on both photosynthesis and respiration by analysing the parameters of light response curves. Branch-level photosynthetic parameters showed a delayed response to temperature, and, at Kevo, they were well described by sigmoid functions of the state of acclimation (S). Temperature acclimation was slower (time constant, τ = 7 days) for maximum photosynthesis (βbr) than for quantum efficiency (αbr) (τ = 5 days). High temperature-independent values of the respiration parameter (γbr) during leaf and shoot expansion were consistent with associated higher growth respiration rates. The ratio γbr/βbr was positively related to temperature, a result consistent with substrate-induced variations in leaf respiration rates at the branch level. Differences in stand structure and within-site variation in the active period of C uptake determined the spatiotemporal patterns in net assimilation amongst branches. Growing season CO2 uptake of individual branches on a leaf area basis did not show a significant relationship with total incident photosynthetically active radiation, and did not differ across sites, averaging ca. 640 g CO2 m−2.