We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Eckart Wrede

Trottier, A., Carty, D. & Wrede, E. (2011). Photostop: production of zero-velocity molecules by photodissociation in a molecular beam. Molecular Physics 109(5): 725-733.

Author(s) from Durham


Photostop is an accessible technique capable of producing atoms or molecules at a standstill in the laboratory frame. Starting with a NO2/Xe molecular beam with a mean velocity of 415 m s-1 and a longitudinal translational temperature of 6 K, NO2 molecules are photodissociated to yield NO(X [image omitted]) fragments with a recoil speed equal to the molecular beam speed. The fraction of NO fragments that recoil opposite to the molecular beam are produced with a 6 K longitudinal velocity distribution centred at zero. The NO molecules are allowed to 'evaporate' from the probe volume by waiting for 10 µs and the molecules left behind are probed with a translational temperature of 1.6 K along the molecular beam axis and an estimated density of 107 cm-3 per quantum state. Through the choice of suitable precursors, the photostop technique has the potential to extend the list of atoms and molecules that can be slowed or trapped. It should be possible to accumulate density in a trap through consecutive loading of multiple pulses.