We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Eckart Wrede

Greaves, S. J., Murdock, D., Wrede, E. & Althorpe, S. C. (2008). New, unexpected, and dominant mechanisms in the hydrogen exchange reaction. Journal of Chemical Physics 128(16): 164306.

Author(s) from Durham


A quasiclassical trajectory study of the state specific H+D-2(v=0, j=0)-> HD(v'=0, j'=0)+D reaction at a collision energy of 1.85 eV (total energy of 2.04 eV) found that the scattering is governed by two unexpected and dominant new mechanisms, and not by direct recoil as is generally assumed. The new mechanisms involve strong interaction with the sloping potential around the conical intersection, an area of the potential energy surface not previously considered to have much effect upon reactive scattering. Initial investigations indicate that more than 50% of reactive scattering could be the result of these new mechanisms at this collision energy. Features in the corresponding quantum mechanical results can be attributed to these new (classical) reaction mechanisms.