Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Prof. J.A. Gareth Williams

Arm, K.J., Leslie, W. & Williams, J.A.G. (2006). Synthesis and pH-sensitive luminescence of bis-terpyridyl iridium(III) complexes incorporating pendent pyridyl groups. Inorganica Chimica Acta 359(4): 1222-1232.

Author(s) from Durham

Abstract

A series of iridium(III) bis-terpyridine complexes have been prepared which incorporate pendent pyridyl groups at the 4′-positions of one or both of the terpyridine (tpy) ligands. These include: three mutually isomeric homoleptic complexes, in which the nitrogen atom of the pendent pyridyl is para, meta or ortho to the C–C bond to the terpyridine; their heteroleptic analogues in which the second ligand is 4′-tolyl-terpyridine (ttpy); analogous complexes of the new ligand, 4′-(2,6-dimethylpyrid-4-yl)-terpyridine; and related complexes incorporating an additional phenyl ring interposed between the terpyridine and the pendent pyridyl group. All of the complexes are luminescent in air-equilibrated aqueous solution at room temperature. The homoleptic complexes display structured emission resembling that of unsubstituted [Ir(tpy)2]3+, with luminescence lifetimes of around 1 μs under these conditions. The heteroleptic analogues give broader, red-shifted emission spectra, similar to that of [Ir(ttpy)2]3+, indicating that emission in these complexes arises primarily from a lower-energy excited state associated with the 4′-tolyl-terpyridine ligand. A further red-shift for the complexes incorporating the additional phenyl ring suggests that the emissive state involves the more conjugated phenylpyridyl-appended ligand in these cases. The luminescence of all of the heteroleptic complexes investigated, except the meta-substituted system, is sensitive to the protonation state of the pendent pyridyl group, and the structure of the ligand can have a significant influence on both the magnitude of the response and the pH region over which it occurs.