We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Prof. David J. Tozer

Peach, M.J.G., Helgaker, T., Salek, P., Keal, T.W., Lutnaes, O.B., Tozer, D.J. & Handy, N.C. (2005). Assessment of a Coulomb-attenuated exchange-correlation energy functional. Physical Chemistry Chemical Physics 8(5): 558-562.

Author(s) from Durham


The recently proposed CAM-B3LYP exchange–correlation energy functional, based on a partitioning of the r−112 operator in the exchange interaction into long- and short-range components, is assessed for the determination of molecular thermochemistry, structures, and second order response properties. Rydberg and charge transfer excitation energies and static electronic polarisabilities are notably improved over the standard B3LYP functional; classical reaction barriers also improve. Ionisation potentials, bond lengths, NMR shielding constants and indirect spin–spin coupling constants are comparable with the two functionals. CAM-B3LYP atomisation energies and diatomic harmonic vibrational wavenumbers are less accurate than those of B3LYP. Future research directions are outlined.