We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Alastair Basden

Basden, A. G., Butterley, T., Myers, R. M. & Wilson R. W. (2007). Durham extremely large telescope adaptive optics simulation platform. Applied Optics 46(7): 1089-1098.

Author(s) from Durham


Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.


1. E. Gendron, A. Coustenis, P. Drossart, M. Combes, M. Hirtzig,
F. Lacombe, D. Rouan, C. Collin, S. Pau, A.-M. Lagrange, D.
Mouillet, P. Rabou, T. Fusco, and G. Zins, “VLTNACO adaptive
optics imaging of Titan,” Astron. Astrophys. 417, L21–L24
2. E. Masciadri, R. Mundt, T. Henning, C. Alvarez, and D. Barrado
y Navascués, “A search for hot massive extrasolar planets
around nearby young stars with the adaptive optics system
NACO,” Astrophys. J. 625, 1004–1018 (2005).
3. E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo,
C. Frank, N. N. Hubin, J. Kolb, M. Le Louarn, J. Lizon, S.
Oberti, R. Reiss, J. Santos, S. Tordo, R. Ragazzoni, C. Arcidiacono,
A. Baruffolo, E. Diolaiti, J. Farinato, and E. Vernet-
Viard, “MAD status report,” in Advancements in Adaptive
Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds.,
Proc. SPIE 5490, 236–247 (2004).
4. D. Mouillet, A. M. Lagrange, J.-L. Beuzit, C. Moutou, M.
Saisse, M. Ferrari, T. Fusco, and A. Boccaletti, “High contrast
imaging from the ground: VLTPlanet Finder,” in ASP Conf.
Ser. 321: Extrasolar Planets: Today and Tomorrow, pp. 39–46
5. C. Vérinaud, M. Le Louarn, V. Korkiakoski, and M. Carbillet,
“Adaptive optics for high-contrast imaging: pyramid sensor
versus spatially filtered Shack–Hartmann sensor,” Mon. Not.
R. Astron. Soc. 357, L26–L30 (2005).
6. M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, and L. Fini,
“Modelling astronomical adaptive optics—I. The software
package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263–1275
7. M. Le Louarn, C. Verinaud, V. Korkiakoski, and E. Fedrigo,
“Parallel simulation tools for AO on ELTs,” in Advancements in
Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni,
eds., Proc. SPIE 5490, pp. 705–712 (2004).
8. A. J. Ahmadia and B. L. Ellerbroek, “Parallelized simulation
code for multiconjugate adaptive optics,” in Astronomical
Adaptive Optics Systems and Applications, R. K. T. and M.
Lloyd-Hart, eds., Proc. SPIE 5169, pp. 218–227 (2003).
9. A. G. Basden, F. Assémat, T. Butterley, D. Geng, C. D. Saunter,
and R. W. Wilson, “Acceleration of adaptive optics simulations
using programmable logic,” Mon. Not. R. Astron. Soc.
364, 1413–1418 (2005).
10. R. Conan, M. Le Louarn, J. Braud, E. Fedrigo, and N. N.
Hubin, “Results of AO simulations for ELTs,” in Future Giant
Telescopes, J. Angel, P. Roger, and R. Gilmozzi, eds., Proc.
SPIE 4840, pp. 393–403 (2003).
11. A. P. Doel, “Comparison of Shack–Hartmann and curvature
sensing for large telescopes,” in Adaptive Optical Systems and
Applications, R. K. Tyson and R. Q. Fugate, eds., Proc. SPIE
2534, pp. 265–276 (1995).
12. A. P. G. Russell, T. G. Hawarden, E. Atad-Ettedgui, S. K.
Ramsay-Howat, A. Quirrenbach, R. Bacon, and R. M. Redfern,
“Instrumentation studies for a European extremely large telescope:
a strawman instrument suite and implications for telescope
design,” in Emerging Optoelectronic Applications, G. E.
Jabbour and J. T. Rantala, eds., Proc. SPIE 5382, pp. 684–698
13. Cray, Cray XD1 Supercomputer, Cray, 1st ed. (2005), http://
14. A. G. Basden, “Adaptive optics simulation performance improvements
using reconfigurable logic,” Appl. Opt. 46, 900–
906 (2007).
15. F. Assémat, R. Wilson, and E. Gendron, “Method for simulating
infinitely long and non stationary phase screens with optimized
memory storage,” Opt. Express 14, 988–999 (2006).
16. R. M. Myers (, Department of Physics,
South Road, Durham DH1 3LE, UK (personal communication,
17. F. Rigaut, “Ground conjugate wide field adaptive optics for the
ELTs,” in Beyond Conventional Adaptive Optics: A Conference
Devoted to the Development of Adaptive Optics for Extremely
Large Telescopes. Proceedings of the Topical Meeting (Venice,
2001) E. Vernet, R. Ragazzoni, S. Esposito, and N. Hubin eds.,
Garching, Germany: European Southern Observatory, 2002
ESO Conference and Workshop Proceedings, 58, pp. 11–16
18. D. R. Andersen, S. Stoesz, S. Morris, M. Lloyd-Hart, D. Crampton,
T. Butterley, B. Ellerbroek, L. Jolissaint, M. Milton, R.
Myers, K. Szeto, A. Tokovinin, J. Veran, and R. Wilson, “Performance
modeling of a wide-field ground-layer adaptive optics
system,” Pub. Astron. Soc. Pac. 118, 1574–1590 (2006).