Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Basile Curchod

Agostini, Federica, Gross, E.K.U. & Curchod, Basile F. E. (2019). Electron-Nuclear Entanglement in the Time-Dependent Molecular Wavefunction. Computational and Theoretical Chemistry 1151: 99-106.

Author(s) from Durham

Abstract

We address the problem of electron-nuclear entanglement in time-dependent molecular wavefunctions, key quantities of quantum nonadiabatic molecular dynamics. The most natural way of tackling this question consists in comparing the nonadiabatic dynamics obtained from time-dependent self-consistent field and the exact factorization of the time-dependent electron-nuclear wavefunction. Both approaches are based on a single-product Ansatz for the molecular wavefunction, with both a time-dependent electronic and nuclear wavefunction. In the former, however, electron-nuclear coupling is treated within the mean-field approximation, whereas in the latter the entanglement is completely accounted for. Based on a numerical model study, we analyze the nature of the electron-nuclear entanglement in the exact factorization.