We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Kieran O'Brien

Wang, L., Steeghs, D., Casares, J., Charles, P. A., Muñoz-Darias, T., Marsh, T. R., Hynes, R. I. & O'Brien, K. (2017). System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence. Monthly Notices of the Royal Astronomical Society 466(2): 2261-2271.

Author(s) from Durham


We present phase-resolved spectroscopy of the millisecond X-ray pulsar XTE J1814-338 obtained during its 2003 outburst. The spectra are dominated by high-excitation emission lines of He II λ4686, Hβ, and the Bowen blend C III/N III 4630–50 Å. We exploit the proven Bowen fluorescence technique to establish a complete set of dynamical system parameter constraints using bootstrap Doppler tomography, a first for an accreting millisecond X-ray pulsar binary. The reconstructed Doppler map of the N III λ4640 Bowen transition exhibits a statistically significant (>4σ) spot feature at the expected position of the companion star. If this feature is driven by irradiation of the surface of the Roche lobe filling companion, we derive a strict lower limit to the true radial velocity semi-amplitude K2. Combining our donor constraint with the well-constrained orbit of the neutron star leads to a determination of the binary mass ratio: q =

. The component masses are not tightly constrained given our lack of knowledge of the binary inclination. We cannot rule out a canonical neutron star mass of 1.4 M⊙ (1.1 M⊙ < M1 < 3.1 M⊙; 95 per cent). The 68/95 per cent confidence limits of M2 are consistent with the companion being a significantly bloated, M-type main-sequence star. Our findings, combined with results from studies of the quiescent optical counterpart of XTE J1814-338, suggest the presence of a rotation-powered millisecond pulsar in XTE J1814-338 during an X-ray quiescent state. The companion mass is typical of the so-called redback pulsar binary systems (M2 ∼ 0.2 M⊙).