Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Stacey Aston

Aston, Stacey, Radonjic, Ana, Brainard, David H. & Hurlbert, Anya C. (2019). Illumination discrimination for chromatically biased illuminations: Implications for color constancy. Journal of Vision 19(3): 15.

Author(s) from Durham

Abstract

We measured discrimination thresholds for illumination changes along different chromatic directions starting from chromatically biased reference illuminations. Participants viewed a Mondrian-papered scene illuminated by LED lamps. The scene was first illuminated by a reference illumination, followed by two comparisons. One comparison matched the reference (the target); the other (the test) varied from the reference, nominally either bluer, yellower, redder, or greener. The participant's task was to correctly select the target. A staircase procedure found thresholds for discrimination of an illumination change along each axis of chromatic change. Nine participants completed the task for five different reference illumination conditions (neutral, blue, yellow, red, and green). We find that relative discrimination thresholds for different chromatic directions of illumination change vary with the reference illumination. For the neutral reference, there is a trend for thresholds to be highest in the bluer illumination-change direction, replicating our previous reports of a “blue bias” for neutral reference illuminations. For the four chromatic references (blue, yellow, red, and green), the change in illumination toward the neutral reference is less well discriminated than changes in the other directions: a “neutral bias.” The results have implications for color constancy: In considering the stability of surface appearance under changes in illumination, both the starting chromaticity of the illumination and direction of change must be considered, as well as the chromatic characteristics of the surface reflectance ensemble. They also suggest it will be worthwhile to explore whether and how the human visual system has internalized the statistics of natural illumination changes.