We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


View Profile

Publication details for Dr Ryan Cooke

Cooke, R.J., Pettini, M., Nollett, K.M. & Jorgenson, R. (2016). The Primordial Deuterium Abundance of the Most Metal-poor Damped Lyman-alpha System. The Astrophysical Journal 830(2): 148.

Author(s) from Durham


We report the discovery and analysis of the most metal-poor damped Lyman-alpha (DLA) system currently known, which also displays the Lyman series absorption lines of neutral deuterium. The average [O/H] abundance of this system is [O/H] = -2.804 +/- 0.015, which includes an absorption component with [O/H] = -3.07 +/- 0.03. Despite the unfortunate blending of many weak D I absorption lines, we report a precise measurement of the deuterium abundance of this system. Using the six highest quality and self-consistently analyzed measures of D/H in DLAs, we report tentative evidence for a subtle decrease of D/H with increasing metallicity. This trend must be confirmed with future high precision D/H measurements spanning a range of metallicity. A weighted mean of these six independent measures provides our best estimate of the primordial abundance of deuterium, 10^5 (D/H)_P = 2.547 +/- 0.033 (log_10 (D/H)_P = -4.5940 +/- 0.0056). We perform a series of detailed Monte Carlo calculations of Big Bang nucleosynthesis (BBN) that incorporate the latest determinations of several key nuclear cross sections, and propagate their associated uncertainty. Combining our measurement of (D/H)_P with these BBN calculations yields an estimate of the cosmic baryon density, 100 Omega_B,0 h^2(BBN) = 2.156 +/- 0.020, if we adopt the most recent theoretical determination of the d(p,gamma)3He reaction rate. This measure of Omega_B,0 h^2 differs by ~2.3 sigma from the Standard Model value estimated from the Planck observations of the cosmic microwave background. Using instead a d(p,gamma)3He reaction rate that is based on the best available experimental cross section data, we estimate 100 Omega_B,0 h^2(BBN) = 2.260 +/- 0.034, which is in somewhat better agreement with the Planck value. Forthcoming measurements of the crucial d(p,gamma)3He cross section may shed further light on this discrepancy.