Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Halim Kusumaatmaja

Fejer, S.N., Chakrabarti, D., Kusumaatmaja, H. & Wales, D.J. (2014). Design principles for Bernal spirals and helices with tunable pitch. Nanoscale 6(16): 9448-9456.

Author(s) from Durham

Abstract

Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.