Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Research

View Profile

Publication details for Dr Stefano Giani

Giani, S. & Hall, E. (2013). An a-posteriori error estimate for hp-adaptive DG methods for elliptic eigenvalue problems on anisotropically refined meshes. Computing 95(1 Supplement): S319-S341.

Author(s) from Durham

Abstract

We prove an a-posteriori error estimate for an \(hp\)-adaptive discontinuous Galerkin method for the numerical solution of elliptic eigenvalue problems with discontinuous coefficients on anisotropically refined rectangular elements. The estimate yields a global upper bound of the errors for both the eigenvalue and the eigenfunction and lower bound of the error for the eigenfunction only. The anisotropy of the underlying meshes is incorporated in the upper bound through an alignment measure. We present a series of numerical experiments to test the flexibility and robustness of this approach within a fully automated \(hp\)-adaptive refinement algorithm.