We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

View Profile

Publication details for Dr Simon Beaumont

Parlett, Christopher M. A., Isaacs, Mark A., Beaumont, Simon K., Bingham, Laura M., Hondow, Nicole S., Wilson, Karen & Lee, Adam F. (2016). Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nature Materials 15(2): 178-182.

Author(s) from Durham


The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts1; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades2, 3; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials4, 5, 6 comprising spatially compartmentalized functions.