Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Postgraduate Module Handbook 2022/2023

Archive Module Description

This page is for the academic year 2021-22. The current handbook year is 2022-23

Department: Mathematical Sciences

MATH42320: Statistical Mechanics

Type Tied Level 4 Credits 20 Availability Available in 2021/22
Tied to G1K509 Mathematical Sciences

Prerequisites

  • Analysis in Many Variables.

Corequisites

  • None

Excluded Combination of Modules

  • None

Aims

  • To develop a basic understanding of the dynamics and behaviour of systems with a large number of constituents.
  • To develop approximation techniques and calculational methods to understand collective dynamics of large particle ensembles.

Content

  • Thermal equilibrium, laws of thermodynamics, equations of state, ideal gas law.
  • Probability distributions and random walks.
  • Classical statistical mechanics.
  • Distributions and identical particles.
  • Black-body radiation, magnetisation, neutron stars.
  • Phase transitions.
  • Reading material on one or more aspects of the Renormalization Group.

Learning Outcomes

Subject-specific Knowledge:
  • The students will: learn to deal with systems where statistical ideas give a good picture of the essential dynamics.
  • have learnt to develop approximation methods necessary to solve problems involving large systems.
  • have mastered knowledge of the subject through one or more of the following subject areas: thermodynamics, probability distributions, statistical ensembles, phase transitions.
  • have a knowledge and understanding of a topic in the renormalization group approach.
Subject-specific Skills:
  • The students will have specialised knowledge and mathematical skills in tackling problems in: statistical modeling of large systems.
  • Ability to read independently to acquire knowledge and understanding of aspects of the Renormalization Group approach.
Key Skills:
  • The students will have an appreciation of Statistical Mechanics and its utility in the real world in the study of various complex systems and solutions thereof.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Subject material assigned for independent study develops the ability to acquire knowledge and understanding without dependence on lectures.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

Teaching Methods and Learning Hours

Activity Number Frequency Duration Total/Hours
Lectures 42 2 per week for 20 weeks and 2 in term 3 1 Hour 42
Problems Classes 8 four in each of terms 1 and 2 1 Hour 8
Preparation and Reading 150
Total 200

Summative Assessment

Component: Examination Component Weighting: 100%
Element Length / duration Element Weighting Resit Opportunity
Written examination 3 hours 100%

Formative Assessment:

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.


Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University