Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Dr Aidan Hindmarch

Skinner, T.D. Wang, M., Hindmarch, A.T., Rushforth, A.W., Irvine, A.C., Heiss, D., Kurebayashi, H. & Ferguson, A.J. (2014). Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers. Applied Physics Letters 104(6): 062401.

Author(s) from Durham

Abstract

Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.