Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Valentin [Valya] Khoze

Georgiou, G., Khoze, V. V. & Travaglini, G. (2003). New tests of the pp-wave correspondence. Journal of High Energy Physics 2003(10): 049.

Author(s) from Durham

Abstract

The pp-wave/SYM correspondence is an equivalence relation, H string = Δ-J , between the hamiltonian H string of string field theory in the pp-wave background and the dilatation operator Δ in = 4 Super Yang-Mills in the double scaling limit. We calculate matrix elements of these operators in string field theory and in gauge theory. In the string theory Hilbert space we use the natural string basis, and in the gauge theory we use the basis which is isomorphic to it. States in this basis are specific linear combinations of the original BMN operators, and were constructed previously for the case of two scalar impurities. We extend this construction to incorporate BMN operators with vector and mixed impurities. This enables us to verify from the gauge theory perspective two key properties of the three-string interaction vertex of Spradlin and Volovich: (1) the vanishing of the three-string amplitude for string states with one vector and one scalar impurity; and (2) the relative minus sign in the string amplitude involving states with two vector impurities compared to that with two scalar impurities. This implies a spontaneous breaking of the 2 symmetry of the string field theory in the pp-wave background. Furthermore, we calculate the gauge theory matrix elements of Δ-J for states with an arbitrary number of scalar impurities. In all cases we find perfect agreement with the corresponding string amplitudes derived from the three-string vertex.

References

1

D. Berenstein, J.M. Maldacena and H. Nastase, Strings in °at space and PP waves from
N = 4 super Yang-Mills, J. High Energy Phys. 04 (2002) 013 [hep-th/0202021].

2

A. Santambrogio and D. Zanon, Exact anomalous dimensions of N = 4 Yang-Mills operators
with large R charge, Phys. Lett. B 545 (2002) 425 [hep-th/0206079].

3

H. Verlinde, Bits, matrices and 1/N, hep-th/0206059.

4

D.J. Gross, A. Mikhailov and R. Roiban, A calculation of the plane wave string hamiltonian
from N = 4 super-Yang-Mills theory, J. High Energy Phys. 05 (2003) 025 [hep-th/0208231].

5

C. Kristjansen, J. Plefka, G.W. Semeno® and M. Staudacher, A new double-scaling limit of
N = 4 super Yang-Mills theory and PP-wave strings, Nucl. Phys. B 643 (2002) 3

hep-th/0205033

.

6

N.R. Constable, D. Z. Freedman, M. Headrick, S. Minwalla, L. Motl, A. Postnikov and
W. Skiba, PP-wave string interactions from perturbative Yang-Mills theory, J. High Energy
Phys. 07 (2002) 017 [hep-th/0205089].

7

M. Spradlin and A. Volovich, Superstring interactions in a PP-wave background, Phys. Rev.
D 66 (2002) 086004 [hep-th/0204146].

8

M. Spradlin and A. Volovich, Superstring interactions in a PP-wave background, II, J. High
Energy Phys. 01 (2003) 036 [hep-th/0206073].

9

A. Pankiewicz, More comments on superstring interactions in the PP-wave background, J.
High Energy Phys. 09 (2002) 056 [hep-th/0208209].

10

A. Pankiewicz and J. Stefanski, B., PP-wave light-cone superstring ¯eld theory, Nucl. Phys.
B 657 (2003) 79 [hep-th/0210246].

11

C.-S. Chu, V.V. Khoze, M. Petrini, R. Russo and A. Tanzini, A note on string interaction on
the PP-wave background, hep-th/0208148.

12

A. Pankiewicz, An alternative formulation of light-cone string ¯eld theory on the plane wave,
J. High Energy Phys. 06 (2003) 047 [hep-th/0304232].

13

Y.-J. Kiem, Y.-B. Kim, S.-M. Lee and J.-M. Park, PP-wave/Yang-Mills correspondence: an
explicit check, Nucl. Phys. B 642 (2002) 389 [hep-th/0205279].

14

P. Lee, S. Moriyama and J.-w. Park, Cubic interactions in PP-wave light cone string ¯eld
theory, Phys. Rev. D 66 (2002) 085021 [hep-th/0206065].

15

Y.-J. Kiem, Y.-B. Kim, J. Park and C. Ryou, Chiral primary cubic interactions from
PP-wave supergravity, J. High Energy Phys. 01 (2003) 026 [hep-th/0211217].

16

J. Pearson, M. Spradlin, D. Vaman, H. Verlinde and A. Volovich, Tracing the string: BMN
correspondence at ¯nite J2=N, J. High Energy Phys. 05 (2003) 022 [hep-th/0210102].

17

J. Gomis, S. Moriyama and J.-w. Park, SYM description of SFT hamiltonian in a PP-wave
background, Nucl. Phys. B 659 (2003) 179 [hep-th/0210153].

18

J. Gomis, S. Moriyama and J.-w. Park, Sym description of PP-wave string interactions:
singlet sector and arbitrary impurities, Nucl. Phys. B 665 (2003) 49 [hep-th/0301250].

19

J. Gomis, S. Moriyama and J.-w. Park, Open + closed string ¯eld theory from gauge ¯elds,
hep-th/0305264.

20

N. Beisert, C. Kristjansen, J. Plefka, G.W. Semeno® and M. Staudacher, BMN correlators
and operator mixing in N = 4 super Yang-Mills theory, Nucl. Phys. B 650 (2003) 125

hep-th/0208178

.

21

C.-S. Chu, V.V. Khoze and G. Travaglini, BMN operators with vector impurities, Z2
symmetry and PP-waves, J. High Energy Phys. 06 (2003) 050 [hep-th/0303107].

22

M. Spradlin and A. Volovich, Note on plane wave quantum mechanics, Phys. Lett. B 565
(2003) 253 [hep-th/0303220].

23

R.A. Janik, BMN operators and string ¯eld theory, Phys. Lett. B 549 (2002) 237

hep-th/0209263

.

24

N. Beisert, C. Kristjansen, J. Plefka and M. Staudacher, BMN gauge theory as a quantum
mechanical system, Phys. Lett. B 558 (2003) 229 [hep-th/0212269].

25

N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super
Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060].

26

U. GÄursoy, Vector operators in the BMN correspondence, J. High Energy Phys. 07 (2003) 048

hep-th/0208041

.

27

N. Beisert, BMN operators and superconformal symmetry, Nucl. Phys. B 659 (2003) 79

hep-th/0211032

.

28

G. Georgiou and V.V. Khoze, BMN operators with three scalar impurites and the
vertex-correlator duality in PP-wave, J. High Energy Phys. 04 (2003) 015 [hep-th/0302064].

29

U. GÄursoy, Predictions for PP-wave string amplitudes from perturbative SYM, J. High Energy
Phys. 10 (2003) 027 [hep-th/0212118].

30

T. Klose, Conformal dimensions of two-derivative BMN operators, J. High Energy Phys. 03
(2003) 012 [hep-th/0301150].

31

C.-S. Chu, V.V. Khoze and G. Travaglini, Three-point functions in N = 4 Yang-Mills theory
and PP-waves, J. High Energy Phys. 06 (2002) 011 [hep-th/0206005].

32

N.R. Constable, D.Z. Freedman, M. Headrick and S. Minwalla, Operator mixing and the
BMN correspondence, J. High Energy Phys. 10 (2002) 068 [hep-th/0209002].

33

M. Bianchi, B. Eden, G. Rossi and Y.S. Stanev, On operator mixing in N = 4 SYM, Nucl.
Phys. B 646 (2002) 69 [hep-th/0205321].

34

E. D'Hoker, D.Z. Freedman and W. Skiba, Field theory tests for correlators in the AdS/CFT
correspondence, Phys. Rev. D 59 (1999) 045008 [hep-th/9807098].

35

Y.-H. He, J.H. Schwarz, M. Spradlin and A. Volovich, Explicit formulas for Neumann
coe±cients in the plane-wave geometry, Phys. Rev. D 67 (2003) 086005 [hep-th/0211198].

36

C.-S. Chu and V.V. Khoze, Correspondence between the 3-point BMN correlators and the
3-string vertex on the PP-wave, J. High Energy Phys. 04 (2003) 014 [hep-th/0301036].