Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Physics

Staff profile

Publication details for Dr Stuart Brand

Timon, V., Brand, S., Clark, S. J., Gibson, M. C. & Abram, R. A. (2005). First-principles calculations of 2x2 reconstructions of GaN(0001) surfaces involving N, Al, Ga, In, and as atoms. Physical Review B 72(3): 035327.

Author(s) from Durham

Abstract

The ab initio studies presented here employed a pseudopotential-plane-wave method in order to obtain the
minimum-energy configurations of various 22 GaN0001 surfaces involving N, Al, Ga, In, and As atoms.
Comparison of the various possible reconstructions allows predictions to be made regarding the most energetically
favorable configurations. Such comparisons depend on the value of the effective chemical potential of
each atomic species, which can be related directly to experimental growth conditions. The most stable structure
as a function of chemical potentials is determined. Based on these results we have characterized the effect of
N in the adlayer surface and the stability dependence with number of substitutions as a function of the model
employed and the possible surfactant character of some of the added atoms. Surface phase diagrams as a
function of the chemical potential have been calculated to show the phase transition between the different
reconstructions.

References

1Properties of Advanced Semiconductor Materials: GaN, AlN,
InN, BN, and SiGe, edited by M. E. Levinshtein, S. L. Rumyantsev,
and M. S. Shur Wiley, New York, 2001.
2 S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J.
Appl. Phys. 87, 965 2000.
3D. Xiao, K. W. Kim, S. M. Bedair, and J. M. Zavada, Appl. Phys.
Lett. 84, 672 2004.
4C. Stampfl and C. G. Van de Walle, Phys. Rev. B 59, 5521
1999.
5Properties of Group-III Nitrides, edited by J. H. Edgar ISPEC,
London, 1994.
6David J. Smith, D. Chandrasekhar, B. Sverdlov, A. Botchkarev,
A. Salvador, and H. Morkoc, Appl. Phys. Lett. 67, 1830 1995.
7 J. Neugebauer, Phys. Status Solidi C 6, 1651 2003.
8Q. K. Xue, Q. Z. Xue, R. Z. Bakhtizin, Y. Hasegawa, I. S. T.
Tsong, T. Sakurai, and T. Ohno, Phys. Rev. Lett. 82, 3074
1999.
9Fu-He Wang, P. Krüger, and J. Pollmann, Phys. Rev. B 64,
035305 2001.
10A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J.
E. Northrup, Phys. Rev. Lett. 79, 3934 1997.
11T. K. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett.
74, 1695 1999.
12R. Miotto, G. P. Srivastava, and A. C. Ferraz, Physica B 292, 97
2000.
13R. M. Feenstra, J. E. Northrup, and Jörg Neugebauer, MRS Internet
J. Nitride Semicond. Res. 7, 3 2002.
14 J. E. Northrup, J. Neugebauer, R. M. Feenstra, and A. R. Smith,
Phys. Rev. B 61, 9932 2000.
15Fu-He Wang, P. Krüger, and J. Pollmann, Phys. Rev. B 64,
035305 2001.
16 J. R. Fuhr and W. L. Wiese in CRC Handbook of Chemistry and
Physics, 77th ed., edited by D. R. Lide and H. P. R. Frederikse
CRC Press, Boca Raton, 1996.
17A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski,
J. Neugebauer, and J. E. Northrup, Surf. Sci. 423, 70
1999.
18M. Gherasimova, B. Gaffey, P. Mitev, L. J. Guido, K. L. Chang,
K. C. Hsieh, S. Mitha, and J. Spear, MRS Internet J. Nitride
Semicond. Res. 4S1, G3.44 1999.
19M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J.
Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter
14, 2717 2002.
20 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 1992.
21 J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B 47,
4174 1993.
22D. Vanderbilt, Phys. Rev. B 41, R7892 1990.
23C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851
2004.
24H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 1976.
25Guo-Xin Qian, R. M. Martin, and D. J. Chadi, Phys. Rev. B 38,
7649 1988.
26 J. E. Northrup, Phys. Rev. Lett. 62, 2487 1989.
27C. Bungaro, K. Rapcewicz, and J. Bernholc, Phys. Rev. B 59,
9771 1999.
28M. Fuchs, J. L. F. Da Silva, C. Stampfl, J. Neugebauer, and M.
Scheffler, Phys. Rev. B 65, 245212 2002.
29M. D. Pashley, Phys. Rev. B 40, 10481 1989.
30C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851
2004.
31D. A. Neumayer, A. H. Cowley, A. Decken, R. A. Jones, V.
Lakhotia, and J. G. Ekerdt, Inorg. Chem. 34, 4698 1995.
32V. Timon, S. Brand, S. J. Clark, and R. A. Abram, J. Phys.:
Condens. Matter 17, 17 2005.
33A. Costales, A. K. Kandalam, and R. J. Pandey, J. Phys. Chem. B
107, 4508 2003.
34 http://environmentalchemistry.com/yogi/periodic/
electronegativity.html
35V. Ramachandran, C. D. Lee, R. M. Feenstra, A. R. Smith, J. E.
Northrup, and D. W. Greve, J. Cryst. Growth 209, 355 2000.
36 J. E. Northrup and C. G. Van de Walle, Appl. Phys. Lett. 84,
4322 2004.
37 J. Neugebauer, T. K. Zywietz, M. Scheffler, J. E. Northrup, H.
Chen, and R. M. Feenstra, Phys. Rev. Lett. 90, 056101 2003.
38Q. Z. Liu, L. Shen, K. V. Smith, C. W. Tu, E. T. Yu, S. S. Lau, N.
R. Perkins, and T. F. Kuech, Appl. Phys. Lett. 70, 990 1997.
39 S. Ruffenach-Clur, Olivier Briot, Bernard Gil, Roger-Louis Aulombard,
and J. L. Rouviere, MRS Internet J. Nitride Semicond.
Res. 2, 27 1997.
40H. Schulz and K. H. Thieman, Solid State Commun. 23 815
1997.
41F. Grosse and J. Neugebauer, Phys. Rev. B 63, 085207 2001.
42X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, Phys.
Rev. B 43, 14277 1991.
43 J. E. Northrup, R. Di Felice, and J. Neugebauer, Phys. Rev. B 55,
13878 1997.
44A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, Phys.
Rev. B 64, 045208 2001.
45D. Schiferl and C. S. Barrett, J. Appl. Crystallogr. 2, 30 1969.
46G. Zollo, J. Tarus, and R. M. Nieminen, J. Phys.: Condens. Matter
16, 3923 2004.