We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Prof David Alexander

Batcheldor, D., Robinson, A., Axon, D.J., Young, S., Quinn, S., Smith, J.E., Hough, J. & Alexander, D.M. (2011). NICMOS Polarimetry of ''Polar-scattered'' Seyfert 1 Galaxies. The astrophysical journal 738(1): 90.

Author(s) from Durham


The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 μm imaging polarimetry of six "polar-scattered" Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus (<0farcs58) is significantly polarized in only three objects, but five of the six exhibit polarization in a 0farcs58-1farcs5 circum-nuclear annulus. In Fairall 51 and ESO 323-G077, the polarization position angle at 2 μm (θ2 μm) is consistent with the average for the optical spectrum(θ v ), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between θ2 μm and θ v off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (≈60°) in θ2 μm between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 μm, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 μm emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission. Based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10160.