We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Silvia Pascoli

Ballett, P., King, S.F., Luhn, C., Pascoli, S. & Schmidt, M.A. (2014). Testing solar lepton mixing sum rules in neutrino oscillation experiments. Journal of High Energy Physics 2014(12): 122.

Author(s) from Durham


Small discrete family symmetries such as S4, A4 or A5 may lead to simple leading-order predictions for the neutrino mixing matrix such as the bimaximal, tribimaximal or golden ratio mixing patterns, which may be brought into agreement with experimental data with the help of corrections from the charged-lepton sector. Such scenarios generally lead to relations among the parameters of the physical leptonic mixing matrix known as solar lepton mixing sum rules. In this article, we present a simple derivation of such solar sum rules, valid for arbitrary neutrino and charged lepton mixing angles and phases, assuming only θ 13 ν  = θ 13 e  = 0. We discuss four leading-order neutrino mixing matrices with θ 13 ν  = 0 which are well motivated from family symmetry considerations. We then perform a phenomenological analysis of the scope to test the resulting four solar sum rules, highlighting the complementarity between next-generation neutrino oscillation experiments such as the reactor experiment JUNO and a superbeam experiment.