
Reiss November 2017 

1 

 
 
Against External Validity 

 
 
Prof Julian Reiss, Durham University  
 
 
CHESS Working Paper No. 2017-03 
Durham University 
November 2017 

 

 
 
 
 
 
 

CHESS working paper (Online) ISSN 2053-2660 



Reiss November 2017 

2 

 
 
 
 

Against External Validity 
 
 

Prof Julian Reiss 
 
 
 

Prof Julian Reiss 
Department of Philosophy 

Durham University 
South Road 

Durham 
DH1 3LE 

UK 
julian.reiss<at>durham.ac.uk 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reiss November 2017 

3 

I. Introduction 

 

Francesco Guala once wrote that ‘The problem of extrapolation (or external validity as it is 

sometimes called) is a minor scandal in the philosophy of science’ (Guala 2010: 1070). I agree with 

the statement, but for different reasons. The scandal is not, or not any longer, that the problem has 

been ignored in the philosophy of science. The scandal is that framing the problem as one of 

external validity encourages poor evidential reasoning. The aim of this paper is to propose an 

alternative – an alternative which constitutes much better evidential reasoning about target systems 

of interest, and which makes do without (or with a minimum of) considerations of external validity. 

 

In what follows, I will first describe the problem, sketch the main proposals for a solution we find 

in the literature today, note a common structure and argue that this way of thinking about the 

problem encourages poor evidential reasoning. I will then propose my alternative and go through a 

number of ways in which evidence from model systems can play a role in evidential reasoning 

without any consideration of whether or not some claim is ‘externally valid’. The bulk of my 

examples will be drawn from the domain of cancer causation. 

 

II. What Is the Problem of External Validity? 

 

External validity is normally juxtaposed with internal validity, and the former defined in terms of 

the latter. Here is a short history of definitions (Shadish et al. 2002: 37; footnotes suppressed): 

 

Campbell (1957) first defined internal validity as the question, "did in fact the experimental 

stimulus make some significant difference in this specific instance?" (p.297) and external 

validity as the question, "to what populations, settings, and variables can this effect be 

generalized?" (p. 297). Campbell and Stanley (1963) followed this lead closely. Internal 

validity referred to inferences about whether "the experimental treatments make a difference 

in this specific experimental instance" (Campbell & Stanley, 1963, p. 5). External validity 

asked "to what populations, settings, treatment variables, and measurement variables can 

this effect be generalized" (Campbell & Stanley, 1963, p. 5). 

 

Others define the terms similarly, but the focus on causal claims is more explicit (Guala 2003: 

1198; emphasis original): 

 

Internal validity is achieved when the structure and behavior of a laboratory system (its 

main causal factors, the ways they interact, and the phenomena they bring about) have been 

properly understood by the experimenter. For example: the result of an experiment E is 

internally valid if the experimenter attributes the production of an effect B to a factor (or set 

of factors) A, and A really is the (or a) cause of B in E. Furthermore, it is externally valid if 

A causes B not only in E, but also in a set of other circumstances of interest, F, G, H, etc. 

 

In the biomedical sciences, the term ‘extrapolation’ is more common than ‘external validity’. It 

describes the inference instead of a property of the inferred claim. Daniel Steel gives a number of 

examples of such inferences and writes (Steel 2008: 3; emphasis original): 

 

In each of these cases, one begins with some knowledge of a causal relationship in one 

population, and endeavors to reliably draw a conclusion concerning that relationship in a 

distinct population. I will use the term extrapolation to refer to inferences of this sort.  
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The feature all these definitions have in common and on which I want to focus here is the basic 

understanding of the proper process of evidential reasoning. In this understanding, a first inference 

is made about one system – a laboratory or experimental system, or a test population. 

Then a second inference is made from knowledge about that system to knowledge or purported 

knowledge about another, related system or set of such systems — often a field system or a 

population different from the test population. Call the first kind a ‘model system’ and the second, 

‘target system(s) of interest’. 

 

The ‘problem of external validity’ is the problem of making a reliable inference about target 

systems of interest when the available data are drawn mostly or exclusively from a model system or 

model systems. Hume’s problem of induction can be understood as a version of this problem if by 

‘model system’ we refer to some system in the present or past, say T, and the system of interest is 

the very same system at some point in the future, say T + n: Does the bread that has nourished me 

up until today continue to nourish me tomorrow? It is quite a different problem when the model and 

target systems differ in important respects: Is bread, which has proved to be nourishing to humans, 

safe for consumption for other species? Most discussions of external validity ignore the temporal 

aspect and instead focus on model-target inferences where model and target co-exist but differ in 

important respects. 

 

What is an ‘important respect’? To see that, first notice that the claims made about model and target 

system are normally causal claims, for instance about the toxicity of a substance, the effectiveness 

of a policy or the attribution of some outcome to the factor responsible for it. Causal claims in the 

social and biomedical sciences – in the context of which the problem of external validity is 

normally discussed – are true in virtue of some underlying structure or complex system or 

arrangement of mechanisms. For example, the fact that aflatoxin is toxic in humans is grounded in 

the human digestive system, and, generally, whether or not a compound is toxic depends on such a 

system. Likewise, the the fact that increases in the money stock tend to bring about increases in 

prices has to do with certain socio-economic arrangements (concerning, for instance, a society’s 

monetary constitution, banking system, and system of price determination), and, generally, whether 

or not increases in money cause increases in prices depend on such arrangements. A difference 

between systems is important if it pertains to one of its features that are responsible for the causal 

relation to hold. For instance, differences in digestive system would be important for the assessment 

of the external validity of toxicity claims; differences in monetary constitution for the assessment of 

the external validity of a claim about the power of money to raise prices. 

 

The ‘extrapolator’s circle’ (Steel 2008) obtains when there are important differences between model 

and target, and the target is itself not epistemically accessible to the extent that the model is 

accessible. We often experiment on model systems because they are more readily accessible – 

because it is cheaper, they are more manipulable, there are fewer ethical problems involved in these 

experiments. But this normally means that the model system differs in important respects from the 

target system (if it didn’t, we would experiment on the target directly). And this in turn means that 

the inference from model to target is not straightforward. 

 

In sum, the terms external validity and extrapolation pertain to inferences in situations where the 

ultimate interest is in learning something about a specific target system of interest, where this 

system is, for one reason or another, epistemically less accessible than another related but 

importantly different system, and where we learn about the system of ultimate interest through 

learning about the related but importantly different system. 
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The catch is of course that the inferences of the second kind, i.e., the extrapolations, are far from 

trivial. If a substance is toxic in a non-human animal species, there is no guarantee that it is also 

toxic for most other species or, in particular, in humans. This is because different animal species 

have different digestive systems, and therefore there is variation (or heterogeneity) with respect to 

the toxicity of substances among species. If humans behave in a certain way in a laboratory 

situation, there is no guarantee that they will continue to behave in the same way in natural 

situations, for instance because of the Hawthorne effect (a behavioural modification of individuals 

in response to being observed; therefore also called the ‘observer effect’). And of course there is 

cultural variation in behaviour between different groups.  

 

III. Solution Strategies 

 

In this section I will briefly survey the solution strategies that have been offered in the literature. 

For each strategy, I will outline the essence of the strategy, state how it is supposed to solve the 

problem of external validity and finally describe its limitations. 

 

III .a. Simple Induction 

 

This ‘strategy’ I mention only for the sake of completeness and because it appears to be used by 

some practitioners, but it is not so much a strategy as a denial that a strategy is needed. The 

proposal is: Maintain that a claim CM, which has been established relative to model system M, also 

holds in target systems T1, T2, …, Tn, unless there are compelling reasons for not doing so (e.g., 

Post et al. 2013: 641-2). So here the idea is essentially that the burden of argument is on those who 

raise the problem by asking them to provide reasons, compelling reasons even, to believe that a 

claim cannot be generalised (for a similar ‘shift in the burden of proof’ argument, see Starmer 1999: 

15). 

 

The proposal is either empty or leads to unreliable inferences if followed, depending on how strong 

the reasons for caution are assumed to be. If any old reason would do, the proposal is empty as there 

are always differences between model and target systems, which can be held to constitute reasons 

for blocking the inference. Importantly, simple induction does not provide any information about 

what else to do in situations in which the simple induction on its own is likely to fail. 

 

If ‘reason’ indeed means ‘compelling reason’, the proposal leads to many bad inferences. Sure, for 

some problems the relevant system features are so widely shared that one can confidently 

extrapolate from model to target. That parachute use is effective in preventing major trauma due to 

gravitational challenge has been established in numerous experiments (Smith and Pell 2003) and 

can safely be extrapolated to groups of patients who differ markedly in all sorts of respects.  

The effect is so large that it swamps whatever differences there are in the fragility of bones between 

humans. Similarly, countless experiments during the French Revolution have established the claim 

‘Decapitation causes death in humans’. Even if that population was highly selected, there are no 

reasons to believe that the claim cannot be generalised to other human, and indeed, other mammal 

and bird populations. Even Klaus Störtebeker, the German pirate about whom legend has it that, 

after he and his crew have been sentenced to death by beheading, he asked the mayor of Hamburg 

to release as many of his companions as he could walk past being beheaded, the mayor granted the 

request and Störtebeker’s walked past 11 crew members, eventually died. 

 

Generally, however, there will be some reasons but rarely compelling reasons for blocking the 

inference. If a compound is toxic in a non-human animal population, there are no compelling 

reasons to think that the claim cannot be extrapolated. Because the heterogeneity with respect to 
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toxicity is considerable among species, we simply don’t know whether one animal species or 

another is a good model for humans. The same is true, for instance, of economics experiments, the 

results of many of which are sensitive to changes in population (Reiss 2013: Ch. 10). 

 

III .b. Analogy 

 

One way to characterise extrapolation is as a species of analogical reasoning (LaFollette and Shanks 

1997, Guala 2005). Following Paul Thagard (Thagard 1999), Guala argues that animal model-to-

human inferences can be reconstructed as analogical inferences of the following kind (Guala 2005: 

196): 

 

(1) humans have symptoms Y, 

(2) laboratory animals have symptoms Y, 

(3) in laboratory animals, the symptoms are caused by factor X, 

(4) the human disease is therefore also caused by X. 

 

Thus far, the analogical approach does not make any advance relative to simple induction. 

Because of population heterogeneity, there is no reason to believe that a claim ‘X causes Y in animal 

model M’ generally entitles researchers to make the inference to ‘‘X causes Y in the target 

population humans’. According to Guala, animal models have to be ‘relevantly similar’ to the 

human targets. Thus, extrapolation inferences (Guala 2005, 199; emphasis added): 

 

cannot be strong unless experimental and field evidence have been generated by systems 

that are similar in all relevant respects or, in other words, unless all sources of external 

validity [i.e., extrapolation] error have been taken care of by means of accurate design. 

 

The problem is that this strict demand will lead to a sceptical conclusion according to which 

extrapolations are never justified because animal models are never similar in all relevant respects, 

which is why we experiment on animals to begin with (for the sceptical conclusion, see LaFollette 

and Shanks 1997; for a discussion, Steel 2008: 92-9). 

 

In more recent work, Guala demands merely that model and target be similar in respects ‘that are 

deemed relevant by our current background knowledge’ (Guala 2010: 1075). Background 

knowledge tells us that certain variables may be correlated with the effectiveness of a cause to bring 

about an effect or with the likelihood that a causal relationship holds. A drug may work for men but 

not for women, and it may decrease in efficacy with age. The proposal then is to measure known 

co-variates in a model or (better) a set of models, determine the value of each covariate in the 

target, and to form an expectation about the causal claim on the basis of the model estimates. 

 

The method is similar to the measurement of ‘hedonic’ price indices in econometrics. (Hedonic 

regression is used more widely in economics and other social sciences, so this serves just as a 

comparison with a well-known example). A new version of some good g is introduced in the market 

at time t and a price pgt. This price differs from the price of the good in the last period pgt– 

1. The pure price change (pgt / pgt–1) – 1 is likely to overestimate inflation because of the change in 

its quality. That, however, is not directly observable. Background knowledge, however, tells us 

what factors (x) are likely to be relevant. If, say, g is an operating system, these factors may be 

speed, reliability, number of features, user friendliness etc. The contributions of each of these to the 

price can now be determined by estimating a factor weight from data on existing goods via 

regression pgj = α + Σi βjixij, where the gj’s are the existing goods and the xi’s the quality 



Reiss November 2017 

7 

determining factors. A nice feature of the method is that it is quite flexible. Suppose that user 

friendliness is the factor consumers really care about, but it’s not measurable or not measured. 

‘Lines of code’ is something consumers don’t care about at all, but it is, for whatever reason, 

correlated with user friendliness. In this case, lines of code can feature in the regression as one of 

the xi’s even though it is not a ‘cause’ of quality. The price the new good should have on the basis 

of its changed quality can now be estimated and thus, in turn, the pure price change. 

 

There is an ontological and an epistemic prerequisite for the method to work. It must in fact be the 

case that the causal effect of one variable on another can be represented by a regression equation 

like the above. It doesn’t have to be a simple linear average of the factor contributions, but there 

must be some principle of combination, even if it is highly case specific. There are some reasons to 

believe that there is not such a principle of combination, i.e., that factors sometimes interact so that 

the relationship between a given cause and its effect depends on what else is present in the situation. 

That, say, a specific substance is toxic can be explained with reference to the organism’s digestive 

system. But why should toxicity across species be related to features of organisms in a regular 

manner? Being subject to common laws of physics and chemistry may explain some commonality, 

but in general we would expect organisms to solve problems of adaptation to their environments 

within their ecological niche. Across species generalisations are therefore unlikely to be very 

reliable. In addition we must have enough data to estimate the factor weights reliably. The more 

factors there are, the more experiments have to be run. In practice, the second requisite will be 

particularly constraining because of the high cost of running experiments. 

 

III .c. Comparative Process Tracing 

 

As mentioned above, causal relations in the biomedical and social sciences hold on account of an 

underlying structure or complex system. Structures or complex systems can in turn be understood as 

arrangement of mechanisms. Process tracing comprises techniques for learning such arrangements 

of mechanisms (Darden and Craver 2002, Glennan 2005). Daniel Steel has developed an account of 

extrapolation that uses process tracing for model-target inferences (Steel 2008). 

 

Because model systems are epistemically accessible, researchers are often able to establish not only 

that some variable causes another in the model system, but also how, i.e., through what mechanism 

or mechanisms. Comparative process tracing proceeds on the principle, ‘Same causal process — 

same effect’. Thus, If C causes E in M through some mechanism Q, and we find Q also operative in 

the target T, we infer that C causes E in T as well. 

 

However, since T is not as accessible, it will be difficult to establish the full mechanism in T – 

which is why the experiment is conducted on M in the first place. Steel now argues that the 

extrapolation can proceed on a relatively rudimentary understanding of the mechanism in T.  

Researchers just have to know at what point or points are likely to differ. When differences are 

suspected, these differences will be transmitted downstream from the likely point of departure. 

Hence it is only necessary to examine the mechanism in Q at points downstream from where 

differences between model and target are suspected. 

 

The main problem with this proposal is that the epistemic requirements are really high. 

Mechanisms, especially in biology and social systems, tend to be so complicated that they are hard 

to learn even in models. In biology, our ability to learn mechanisms has greatly improved with the 

advancement of molecular biology, but it remains the case that the underlying mechanisms for 

accepted causal relations are not understood, or that they come to be understood only much after the 

macro causal claim has been accepted (Reiss 2012). In the social sciences, the attempt to gain 
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knowledge of mechanisms that is robust enough as to be useful for extrapolation is quite hopeless 

— and Steel admits as much (Reiss 2010). 

 

III .d. External Validity by Engineering 

 

This method too is based on the principle ‘Same causes – same effects’ but it works not by simply 

comparing the underlying structure for a causal relation between model and target but instead by 

engineering the target. Guala argues that this approach was used in case of the Federal 

Communications Commission (FCC) auctions of the electromagnetic spectrum (Guala 2005: Ch.8). 

Laboratory experiments concerning the effects of different auction rules had to be conducted 

because the rules were too complex for theoreticians to make definite predictions. Different rules 

were thus tested in the laboratory, and the real auctions followed the rules that worked best in the 

lab. 

 

The engineering strategy, in short, is this: build your institution in such a way as to mimic the 

experimental conditions as closely as possible. It is not the case that existing systems are analysed 

and explained but rather new systems are created, following the recommendations derived from 

theory and experiments. The approach works, at best, only when the design of new institutions is 

the aim (and not when existing systems are sought to be explained). Further, the approach works 

only to the extent that an institution that closely mirrors the experiment can be created. This seems 

to have been the case in the FCC auctions, but that this is possible is not guaranteed. Finally, 

important differences between lab and the field will remain and they may matter. 

 

III .e. Field Experiments 

 

Field experiments are common in economics, where problems of external validity are particularly 

pressing because of the high degree of malleability of human behaviour, which makes it difficult to 

extrapolate straightforwardly from the lab to the wild. Field experiments are said to build a bridge 

between naturally occurring systems and laboratories (List 2007) because they employ individuals 

in their usual environs, albeit with some degree of control and, usually, two or more groups that 

receive different treatments for comparison. 

 

Laboratory experiments tend to produce results that have a good chance of being internally valid 

because the degree of control researchers can exercise is very high. However, the other side of the 

ability to exercise control is the creation of experimental artefacts such as the Hawthorne effect. 

Observational studies are minimally invasive and thus unlikely to create experimental artefacts, but 

they are always subject to possible biases such as selection bias (where individuals self-select into 

‘treatment groups’ so that it is always possible that their reason for selecting a treatment is 

correlated with the outcome). Where lab experiments and observational studies constitute the 

opposite end poles of the spectrum, different kinds of field experiments lie in between (see Harrison 

and List 2004 for a taxonomy). 

 

The bridge metaphor is apt in this sense, but it would be mistaken to assume that Aristotelian 

moderation solves inferential problems. A little bit of experimental artefact and a little bit of 

selection bias might in fact be worse than anything created by the extremes. In particular, there is no 

guarantee that a series of experiments of increasing realisticness converges to the result that is true 

of the target population. For this to happen, interactive effects between the true effect and the 

various study biases would have to be absent, but there is no guarantee that this is so. If anything, 

there is considerable evidence that factors in the social world, especially behavioural factors, tend to 

be interactive rather than additive (Reiss 2008, Reiss 2017). 
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IV. Thinking in Terms of External Validity Encourages Bad Evidential Reasoning 

 

That all the strategies for extrapolation offered in the literature come with conditions for application 

and limitations is not a reason not to use them where they work and with caution. The problem, in 

my view, lies at a deeper level. Understanding inferences about a target system of interest as a 

problem of extrapolation or securing external validity encourages foundationalist thinking about 

inference. All methods discussed in the previous section aim ultimately to learn about a target 

system T and proceed by examining a different but related system M and inferring about T from 

what has been learned about M. The reason lies hidden in the ‘epistemically accessible’. It is not 

that target systems are inherently unknowable. However, for a variety of reasons – ethical, 

financial, technological – they cannot, or not fruitfully, be experimented on. It is the unavailability 

of experimentation that calls for a detour via a surrogate system.  

 

Let’s call ‘experimentalism’ the view that (randomised) experiments are the gold standard of causal 

inference. This view is widely held in the biomedical sciences (going back to biostatisticians such 

as Ronald Fisher, Joseph Berkson, Jacob Yerushalmy and others; see Parascandola 2004) and, more 

recently, also across the social sciences (Shadish et al. 2002; for economics, see for instance Angrist 

and Pischke 2010). We can distinguish between a conservative and a liberal form of 

experimentalism. Conservative experimentalism regards only the gold standard as intrinsically 

reliable and dismisses all other methods as unreliable. Liberal experimentalism defines a hierarchy 

of methods of causal inference. If (randomised) experiments are the gold standard, then other 

methods can be ranked with respect to reliability according to how closely they mimic experiments. 

Liberal experimentalists thus recommend the use of ‘quasiexperimental’ techniques should the gold 

standard be unavailable. 

 

I am not asserting here that one has to be an experimentalist in this sense in order to understand 

reasoning about target systems as a problem of ascertaining external validity. However, it is 

difficult to see the motivation behind this way of understanding reasoning about target systems 

without an experimentalist framework. If one is ultimately interested in learning the truth of a 

hypothesis of the form ‘C causes E in T’ (the ‘T-hypothesis’), why would one make a detour via 

learning the hypothesis ‘C causes E in M’ first (the ‘M-hypothesis’)? The only sensible answer 

appears to be: because we can learn the M-hypothesis more reliably (and, one should add, the 

inference from the M-hypothesis to T-hypothesis is somehow unproblematic or at least it doesn’t 

make the whole inference less reliable than the learning the T-hypothesis directly). Finally, what 

reason to believe that we can learn the M-hypothesis more reliably than the T-hypothesis could 

there be but that we can run an experiment on M but not on T? We do not perform an observational 

study on rats in order to find out whether smoking causes lung cancer in humans. Nor do we use 

ethnographic methods on a ‘model’ small-scale society in order to draw inferences about another. 

 

There is also historical evidence of the connection between external validity reasoning and 

experimentalism. The term ‘external validity’ originated within an experimentalist framework. As 

we’ve seen above, the distinction between internal and external validity is due to Campbell 1957. 

Donald Campbell was clearly an experimentalist in the sense used here, and the Campbell 

Collaboration, a non-profit that aims to improve decision-making about the effects of interventions 

in the social, behavioural, and educational arenas and was named after Donald Campbell, reviews 

social science evidence on the basis of experimentalist principles. 

 

Experimentalism is what I call a foundationalist methodology. A foundationalist methodology 

maintains that certain methods are intrinsically more reliable than others; the use of these methods 
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does not stand in need of epistemic justification by considerations related to the application of the 

method to a particular case. Beliefs tested by the intrinsically reliable method are justified. Call 

these ‘basic beliefs’. Other beliefs must, in order to be justified, be derived from the basic beliefs. 

There are, then, two primary modes of justification according to a foundationalist methodology: a 

basic belief is justified by its having passed a test by an intrinsically reliable method; a non-basic 

belief is justified by being derived from a basic belief. According to experimentalism, the anchoring 

of non-basic beliefs in basic beliefs happens through extrapolations. 

 

The arguments against foundationalism in epistemology are familiar and I will not rehearse them 

here (see for instance Haack 1993: Ch. 1). Let’s thus consider methodological foundationalism in 

its own right. As we have seen, foundationalism has to address two issues: (a) How are the basic 

beliefs justified? (b) How do the non-basic beliefs inherit their justification from that of the basic 

beliefs? 

 

Unfortunately, methodological foundationalism fares poorly on both counts. There are many ways 

in which a well-executed randomised experiment can fail to deliver a causally correct conclusion. 

Criticisms of the randomised experiment as gold standard of evidence for causal claims are well-

known, so let me just summarise some of the main practical and principled issues:  

 

 for finite test populations, treatment and control group(s) may always be unbalanced with 

respect to some prognostic factors, especially when the number of such factors is high; 

 blinding is not possible for all types of treatment, and even when possible, treatment status 

can be revealed by its effectiveness; 

 treatments can be ‘leaked’, for instance, when different groups share treatments; 

 attrition rates can be different between treatment groups and correlated with prognostic 

factors; 

 due to their high cost, randomised experiments are typically relatively short-lived and 
therefore fail to detect long-term effects. 

 

Even though it may plausibly be argued that at least some of these problems also beset other 

methods – and thus that randomised experiments are more reliable than other methods – they 

seriously challenge the view that randomised experiments should be intrinsically reliable or 

guarantee the correctness of their conclusions. Rather, when it comes to assessing a result, a case 

has to be made that: 

 

 treatment and control group(s) were indeed (likely to be) balanced; 

 all participants were successfully blinded with respect to treatment status or else that lack of 
blinding did not confound the result;  

 treatments have not been leaked;  

 attrition rates were similar between groups or, if dissimilar, uncorrelated with prognostic factors; 

 important long-term effects are likely to be inexistent. 
 

If beliefs in the results of randomised experiments are reliable, they are reliable relative to a 

backdrop of other beliefs about the situation at hand and not because of what they are. Hence, 

foundationalism's answer to question (a) is unsatisfactory. The answer to question (b) has already 

been given in Section III. Even if, against what I just argued, experimentalism’s ‘basic beliefs’ were 

justified, inferences to other beliefs are very unlikely to be reliable because extrapolation is so 

poorly understood. Methodological foundationalism thus gives an unsatisfactory answer also to 

question (b). 
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Methodological foundationalism is a flawed epistemology. Instead of asking what we need to know 

in order to make a reliable causal inference about a target system of interest, it asks, ‘What can we 

know for sure, and how do we learn what we want to know from what we can know for sure?’ It is 

sometimes argued that this way of thinking privileges certainty over relevance (Cartwright 2009). 

Milton Friedman once said, ‘A society that puts equality before freedom will get neither. A society 

that puts freedom before equality will get a high degree of both’. Analogously, I maintain that an 

epistemic community that puts certainty before relevance will get neither (for the reasons 

discussed). An epistemic community that puts relevance before certainty will get a high degree of 

both. In what follows I will sketch an alternative, pragmatist epistemology and demonstrate that the 

second part of the slogan is correct. 

 

V. Non-Foundationalist Reasoning About Target Systems of Interest 

 

One major alternative to foundationalism is contextualism. At the most general level, contextualism 

maintains that justification is relative to context. In previous work I have defended that the relevant 

context is an epistemic context given by substantive information about the case at hand, the nature 

and purpose of the inquiry, and relevant methodological, conceptual, and ethical norms (Reiss 

2015). 

 

A causal inquiry begins with a causal hypothesis about a target system of interest: ‘Vinyl chloride 

causes cancer of the liver in humans’, ‘HRT causes breast cancer in women who have had a 

hysterectomy’, ‘Ultraviolet radiation causes melanoma in people of colour’. A fundamental 

distinction the framework makes is between the support for a hypothesis and its warrant, a 

distinction most alternative accounts conflate in the notion ‘evidence’. Support comprises any 

information that is relevant to judging the truth of the hypothesis. It is synonymous with the notion 

of a piece of evidence (such as a fingerprint on the murder weapon). Warrant, by contrast, refers to 

the degree of justification of the hypothesis, which is based on the entire body of evidence (which 

comprises all the information used in the judgement). Bayesianism, to give just one example, 

conflates the two notions because it defines as support anything that changes the degree of warrant: 

e is evidence (in the sense of support) for H if and only if P(H | e) > P(H), i.e., the degree of warrant 

of H is higher after e has been learned. Collecting information relevant to judging the truth of a 

hypothesis and making up one’s mind about it are two different processes, however, which should 

be kept separate. 

 

Support for a hypothesis falls into two kinds: direct and indirect. Direct support addresses the 

question: ‘What patterns in the data are researchers entitled to expect under the supposition of the 

truth of the hypothesis?’ Examples of such patterns include correlations between the cause and 

effect variables in the population of interest or causal process observations that provide evidence for 

a mechanism from cause to effect. Examples of causal process observations in cancer causation are 

observations of DNA damage, gene mutation, sister chromatid exchange, micronucleus formation, 

chromosomal aberrations and aneuploidy. Indirect support addresses the question: ‘What patterns in 

the data incompatible with alternative accounts of the direct evidence are researchers entitled to 

expect?’ A correlation between cause and effect variable, for instance, can be accounted for by a 

causal relation going from the putative effect variable to the cause, a common cause, or numerous 

biases such as selection bias, experimenters bias, diagnostic error, the Berkson paradox and so on. 

Any pattern in the data incompatible with these alternative hypotheses constitutes a piece of indirect 

support. An example is given by a study that showed that under the alternative hypothesis 

‘diagnostic error’ the error in diagnoses of death from lung cancer would have to be an order of 

magnitude greater among men than among women, and among older individuals than among 

younger individuals (Gilliam 1955). These patterns were, together with the background information 
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that such large and systematic differences in diagnostic error are extremely unlikely, taken to rule 

out the diagnostic error hypothesis and thus a piece of indirect support. 

 

Within this ‘pragmatist’ framework, justification is contextual in that it derives from contextual 

factors such as the existing domain-specific information an epistemic community has about the 

situation at hand (for example about what patterns in the data causal relations typically produce in 

that domain, what the relevant alternative hypotheses are, about the operation of institutions such as 

hospitals and the behaviour of individuals such as patients, doctors and pathologists), the nature and 

purpose of the inquiry (an inquiry would look for different evidence depending on whether the goal 

is, say, explanation or public health) and relevant norms (for example, standards will vary with 

stakes).  

 

Unlike foundationalism, contextualism takes no type of information, method or study as 

intrinsically reliable or trustworthy. If there are no reasons to dispute the results of a study 

published in a respectable medical journal, researchers are entitled to take them as given. However, 

that can change when information about, say, irregularities in the peer reviewing process or 

fraudulent or sloppy behaviour of an individual researcher become available. To give another 

example: if we learn that ‘Most Published [Biomedical] Research Findings are False’ (Ioannidis 

2005), the ability to draw on existing work in any area of biomedical research is obviously 

compromised and will be necessary to examine any given study for frequently occurring errors such 

as low power, design problems, a host of biases, conflicts of interest and so on. 

 

The inquiry ends with a conversion of the direct and indirect support into a judgement about the 

degree to which the hypothesis is warranted. In Reiss 2015 I distinguish four degrees (in decreasing 

order of strength): proof, strong warrant, moderate warrant, and weak warrant. Degree of warrant is, 

essentially, proportional to the number and significance of the relevant alternative hypotheses that 

have been ruled out. 

 

Randomised experiments play no special role in the pragmatist theory. Randomisation is one way to 

control for selection bias (Worrall 2002). Selection bias is an alternative hypothesis that can account 

for a correlation, and controlling for it means to raise the degree of warrant for the causal 

hypothesis. But there are alternative ways. If background information tells us that individuals who 

are prone to contracting lung cancer are likely to select into the population of smokers, then a 

correlation between smoking and lung cancer cannot provide strong warrant for the causal 

hypothesis. But if background information also tells us that (a) proneness to lung cancer is most 

likely to have a genetic basis; (b) genetic factors explain about 20% of cancer risk; (c) (strong) 

smokers have 6000-fold increased risk as compared to non-smokers, then selection bias can be 

ruled out without randomisation.  

 

VI. Contextualist Reasoning From Models Without External Validity 

 

Within the pragmatist theory sketched above information drawn from models, i.e., from systems 

that resemble the target system of interest in relevant respects and stand in for them, can play a 

variety of roles. Let me focus on a number of heuristic and evidential roles here.  

 

VI.a. Suggesting Hypotheses 

 

Most hypotheses concerning the carcinogenicity of substances stem from a suspicion, based on 

clinical experience, that the concurrence of exposure to a particular agent and occurrence of a 
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cancer has happened rather more frequently than would be expected by chance. The initial – direct 

– support is often a series of case reports, say, concerning factory workers exposed to the substance. 

However, for some agents (e.g., diethylstilbestrol, melphalan, mustard gas, and vinyl chloride) 

evidence of carcinogenicity in experimental animals preceded any evidence obtained from studies 

on humans (Vainio et al. 1995). In such cases, information drawn from animal models can play the 

heuristic role of suggesting a hypothesis concerning humans. Importantly, in this role, information 

drawn from animal models does not provide any support or warrant concerning carcinogenicity in 

humans. 

 

VI.b. Providing Direct Support 

 

Once the hypothesis is being investigated, the very same laboratory experiments on animal models 

can provide direct support. In order for the experiments to play this role, we need a bridge principle 

that connects carcinogenicity in animals with carcinogenicity in humans. The bridge principle is the 

following (IARC 2006: 12; emphasis added):  

 

All known human carcinogens that have been studied adequately for carcinogenicity in 

experimental animals have produced positive results in one or more animal species. 

 

Due to this piece of background information, a positive animal study provides direct support for 

carcinogenicity in humans. This is because, given the information, under the supposition of the truth 

of the human carcinogenicity hypothesis researchers are expected to find positive results in one or 

more animal species. Considerations of external validity play absolutely no role here. It does not 

matter whether the model is a ‘good’ one, whether salient mechanisms are shared or whether the 

principle ‘same causes – same effects’ can be applied. Animal studies are direct support because if 

the substance is carcinogenic in humans, it will be carcinogenic in some animal species. Whereas in 

VI.a. the animal study must precede the inquiry of carcinogenicity in humans, in VI.b. the order of 

events is irrelevant. It is also important to note that direct support alone does not provide any 

warrant for the hypothesis, not even what I call ‘weak warrant’, for which at least some alternative 

hypotheses have to be ruled out. 

 

This role can be significant when other types of direct support are unavailable. Cause variables are 

not always correlated with their effect variables, for instance. If so, the inquiry has to proceed from 

other kinds of direct support and, for human carcinogenicity studies, experiments on animal models 

can fit the bill. 

 

VI.c. Specifying Hypotheses 

 

Hypotheses of the form ‘Substance S causes cancer in humans’ are very unspecific because cancers 

can occur at numerous sites and, at each site, have a variety of morphologies. It is often difficult to 

rule out alternative hypotheses concerning the causes of cancer because cancer can have a very 

large number of causes. Liver cancer, for example, is caused by birth defects, alcohol abuse, 

aflatoxins, chronic infection with liver diseases such as hepatitis B and C, hemochromatosis, 

cirrhosis, obesity and diabetes, fatty liver disease, and other factors. It will be difficult to find data 

sets that control for all these factors, experiments testing for toxicity are unethical and even if one 

could conduct them, they would be unlikely to provide reliable information due to the large number 

of plausible confounders. 

 

Information about cancer sites and morphologies from animal studies can help to form more 

specific expectations about humans. Angiosarcomas of the liver, for instance, have been observed 
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in mice and rats exposed to vinyl chloride in lab experiments (IARC 1974). Subsequently, the same 

condition was found in humans exposed to the substance. Angiosarcomas are extremely rare, 

however, so that an observed correlation between exposure to vinyl chloride and incidents of the 

disease can hardly be accounted for by other hypotheses. 

 

Again, the hypothesis was not tested for external validity. Rather, the information from animal 

experiments helped to formulate a more specific hypothesis, and alternatives could be ruled out on 

the basis of human data. This is a general feature of causal reasoning: the more specific researchers’ 

expectations are concerning effect size, the temporal evolution of the effect, its modus operandi, 

and its form, the easier it is to rule out alternatives hypotheses. An alternative might be able to 

account for a qualitative effect but not for a specific size or for the occurrence of the effect but not 

for when and where it occurred. 

 

VI.d. Analogies With Known Carcinogens 

 

Analogies with known carcinogens support inferences that are somewhat similar to extrapolations, 

but they have a different form. Extrapolations have the form ‘C causes E in M, therefore C (also) 

causes E in T’, where T is relevantly similar. Analogies have the form ‘C causes E in T, therefore 

C* (also) causes E in T’. They can play an inferential role provided the modus operandi of C to 

cause E in T is well understood. 

 

Polybrominated biphenyls (PBBs) are structurally very similar to the known carcinogens of the 

polychlorinated biphenyl (PCB) group. Because of this, and because it is known that structurally 

similar compounds act through the same mechanisms of carcinogenesis, if PBBs were 

carcinogenic, we would expect them to operate through the same mechanisms as PCBs (IARC 

2016: 37): 

 

Concerning experimental and mechanistic studies, while there is an extensive body of 

literature on the carcinogenicity of PCBs, their brominated analogues have received much 

less attention and study. PBBs will likely be found to exhibit their toxicity and disease 

potential via many of the same pathways as their chlorinated counterparts, with equivalent 

or greater toxicity. 

 

Thus, analogies provide direct support for carcinogenicity. Again, no extrapolation is needed 

here, but an examination of the mechanisms through which PBBs operate in humans. 

 

VII. Conclusions 

 

This paper argued in favour of two claims. First, thinking about causal inference in terms of the 

‘internal validity’ and ‘external validity’ of causal claims encourages bad evidential reasoning 

because it suggests that for a claim to be externally valid of a target system of interest we have to 

establish an analogous claim for some experimental model system first. That is not so. Reasoning 

concerning target systems should begin with a hypothesis about that system and ask what types of 

evidence we need to establish that hypothesis. The pragmatist theory of evidence sketched in 

Section V provides an account that proceeds in that way. Second, within such an account of 

reasoning about target systems, information drawn from model systems can play a variety of 

heuristic and evidential roles that have nothing to do with extrapolations or judgements of external 

validity. 
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This paper has focused on heuristic roles and the provision of direct support. I am not suggesting 

that evidence that draws on models such as animal models can never play a justificatory role, i.e., 

also provide warrant for a hypothesis. Indeed, in the IARC classification system, animal evidence 

can help to justify a hypothesis concerning humans: 

 

Group 2A: The agent is probably carcinogenic to humans 

This category is used when there is limited evidence of carcinogenicity in humans and 

sufficient evidence of carcinogenicity in experimental animals. In some cases, an agent may 

be classified in this category when there is inadequate evidence of carcinogenicity in 

humans and sufficient evidence of carcinogenicity in experimental animals and strong 

evidence that the carcinogenesis is mediated by a mechanism that also operates in humans. 

 

Group 2B: The agent is possibly carcinogenic to humans 

This category is used for agents for which there is limited evidence of carcinogenicity in 

humans and less than sufficient evidence of carcinogenicity in experimental animals.  

 

Thus, if there is ‘limited’ evidence on humans, a compound can be bumped up from 2B to 2A if 

there is ‘sufficient’ evidence on animals. Surveying a large number of IARC monographs indicates, 

however, that such upgrades are very rare, in particular in older monographs. An explanation for 

this is that stronger bridge principles than those of the kind discussed in Section VI are needed. We 

would need to know not just ‘if S is carcinogenic in humans, then it will be carcinogenic in some 

animal species’ but something much stronger. It is well possible that when better bridge principles 

are available, animal evidence will gain in significance in warranting hypotheses concerning 

humans and that some of the epistemic strategies discussed in Section III can be recast within the 

pragmatist framework. For now, I will leave this to a future paper. 
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