Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Research Seminar Series

Applied Mathematics Seminars

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Arithmetic Study Group

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Centre for Particle Theory Colloquia

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Computing Seminars/Talks

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


CPT Student Seminar

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Departmental Research Colloquium

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Distinguished Lectures and Public Lectures

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Geometry and Topology Seminar

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Informal HEP Journal club

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Maths HEP Lunchtime Seminars

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Pure Maths Colloquium

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Statistics Seminars

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Stats4Grads

Applied Mathematics Seminars: A mean field approach to the quasineutral limit for the Vlasov-Poisson equation

Presented by Megan Griffin-Pickering, University of Cambridge

27 October 2017 14:00 in CM219

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains an open problem. In this talk I will present recent joint work with Mikaela Iacobelli, in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Contact david.bourne@durham.ac.uk for more information

This seminar series is the continuation of the Numerical Analysis Seminar series that ran until August 2016. This change of name reflects the broader interests of the Applied Mathematics group (note that the Mathematical and Theoretical Particle Physics group also has a seminar series).


Information about seminars for the current academic year. For information on previous years' seminars please see the seminar archives pages.