We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Faculty Handbook Archive

# Archive Module Description

## Department: Mathematical Sciences

### MATH3471: Geometry of Mathematical Physics III

Type Level Credits Availability Module Cap Location Open 3 20 Available in 2021/22 None. Durham

#### Prerequisites

• Analysis in Many Variables (MATH2031) AND (Mathematical Physics II (MATH2071) OR Foundations of Physics 2A (PHYS2581) ).

• None.

• None.

#### Aims

• The aim of the course is to introduce students to the wealth of geometric structures that arise in modern mathematical physics.
• To explore the role of symmetries in physical problems and how they are formulated in mathematical terms, focussing on examples from classical field theory such as electromagnetism.
• To then study geometric constructions such as fibre bundles, connections and curvature that underpin contemporary mathematical physics and its interplay with geometry.

#### Content

• Variational principle for fields and symmetries.
• Lie algebras, groups, and representations.
• Representations of SO(2), SU(2) and the Lorentz group, including spinors.
• Constructing variational principles invariant under symmetries.
• Charged particle in electromagnetic field and gauge symmetry.
• Variational principle for abelian gauge symmetry.
• Non-abelian gauge symmetry.
• Fibre bundles, connections, and curvature.
• Coupling to charged fields: associated vector bundles and sections.
• Examples of topologically non-trivial configurations: abelian Higgs model, Wu-Yang monopole,'t Hooft Polyakov monopole, Bogomolnyi monopoles, instantons.
• Examples involving spinors and index theorems.

#### Learning Outcomes

Subject-specific Knowledge:
• By the end of the module, students will:
• Lie algebras, representations and their applications to theoretical physics
• The structure of gauge field theories and gravity and their relationship with the geometry of fibre bundles
• Examples of topologically non-trivial field configurations
Subject-specific Skills:
• By the end of the module, students will:
• be able to analyse symmetries in field theories and construct field theories with prescribed symmetries
• understand the geometrical foundations of modern theoretical physics
Key Skills:
• <enter text if appropriate for the module, if not remove using 'Right Click, remove outcome'>

#### Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

• Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
• Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
• Formatively assessed assignments provide practice in the application of logic and a high level of rigour as well as feedback for the students and the lecturer on the studentsâ€™ progress.
• The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

#### Teaching Methods and Learning Hours

Activity Number Frequency Duration Total/Hours Lectures 42 2 per week in Michaelmas and Epiphany; 2 in Easter 1 hour 42 Problems Classes 8 4 classes in Michaelmas and Epiphany 1 hour 8 Preparation and Reading 150 Total 200

#### Summative Assessment

Component: Examination Component Weighting: 100%
Element Length / duration Element Weighting Resit Opportunity
End of year written examination 3 hours 100%

#### Formative Assessment:

Weekly written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

â–  Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University