Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Faculty Handbook Archive

Archive Module Description

This page is for the academic year 2013-14. The current handbook year is 2019-20

Department: Physics

PHYS2631: THEORETICAL PHYSICS 2

Type Open Level 2 Credits 20 Availability Available in 2013/14 Module Cap None. Location Durham

Prerequisites

  • Foundations of Physics 1 (PHYS1122) AND ((Single Mathematics A (MATH1561) and Single Mathematics B (MATH1571)) OR (Calculus and Probability I (MATH1061) and Linear Algebra I (MATH1071))).

Corequisites

  • Foundations of Physics 2A (PHYS2581).

Excluded Combination of Modules

  • None

Aims

  • This module is designed primarily for students studying Department of Physics or Natural Sciences degree programmes.
  • It provides a working knowledge of classical mechanics and complements the quantum mechanics content of the module Foundations of Physics 2A by providing theoretical rigour.

Content

  • The syllabus contains:
  • Classical Mechanics: Lagrangian mechanics; Variational calculus and its application; Linear oscillators; One-dimensional systems and central forces; Noetherʼs theorem and Hamiltonian mechanics; Theoretical mechanics; Rotating coordinate systems; Dynamics of rigid bodies; Theory of small vibrations.
  • Quantum Theory: State of a system and Dirac notation; Linear operators, eigenvalues, Hermitean operators; Expansion of eigenfunctions; Commutation relations, Heisenberg uncertainty; Unitary transforms; Matrix representations; Schrödinger equation and time evolution; Schrödinger, Heisenberg and Interaction pictures; Symmetry principles and conservation; Angular momentum (operator form); Orbital angular momentum (operator form); General angular momentum (operator form); Matrix representation of angular momentum operators; Spin angular momentum; Spin ½; Pauli spin matrices; Total angular momentum; Addition of angular momentum.

Learning Outcomes

Subject-specific Knowledge:
  • Having studied this module students will have developed an appreciation of the Lagrangian and Hamiltonian formulations of classical mechanics and be able to describe the rotational motion of a rigid body.
  • They will be able to describe elements of quantum mechanics in a rigorous mathematical way and to manipulate them at the operator level.
Subject-specific Skills:
  • In addition to the acquisition of subject knowledge, students will be able to apply the principles of physics to the solution of predictable and unpredictable problems.
  • They will know how to produce a well-structured solution, with clearly-explained reasoning and appropriate presentation.
Key Skills:

    Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

    • Teaching will be by lectures and tutorial-style workshops.
    • The lectures provide the means to give a concise, focused presentation of the subject matter of the module. The lecture material will be defined by, and explicitly linked to, the contents of recommended textbooks for the module, thus making clear where students can begin private study. When appropriate, the lectures will also be supported by the distribution of the written material, or by information and relevant links on DUO.
    • Regular problem exercises and workshops will give students the chance to develop their theoretical understanding and problem solving skills.
    • Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at other mutually convenient times.
    • Student performance will be summatively assessed through an examination and problem exercises. The examination and problem exercises will provide the means for students to demonstrate the acquisition of subject knowledge and the development of their problem-solving skills. The problem exercises and workshops provide opportunities for feedback, for students to gauge their progress and for staff to monitor progress throughout the duration of the module.

    Teaching Methods and Contact Hours

    Activity Number Frequency Duration Total/Hours
    Lectures 40 2 per week 1 hour 40
    Workshops 6 every 3 weeks 1 hour 6
    Preparation and Reading 154
    TOTAL 200

    Summative Assessment

    Component: Examination Component Weighting: 90%
    Element Length / duration Element Weighting Resit Opportunity
    Written Examination 3 hours 100%
    Component: Problem Exercises Component Weighting: 10%
    Element Length / duration Element Weighting Resit Opportunity
    Problem Exercises 100% Answering a sheet of problems during the vacation

    Formative Assessment:

    Workshops and problems solved therein.


    Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University