We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences


Publication details for Professor Christine Peirce

Peirce, C., Gardiner, A. & Sinha, M.C. (2005). Temporal and spatial cyclicity of accretion at slow-spreading ridges - evidence from the Reykjanes Ridge. Geophysical Journal International 163(1): 56-78.

Author(s) from Durham


A unifying model of oceanic crustal development at slow
spreading rates is presented in which accretion follows a cyclic pattern
of magmatic construction and tectonic destruction, controlled by
along-axis variation in melt supply and coupled to along-axis variation in
spreading rate and across-axis asymmetry in spreading.

This study focuses on the Reykjanes Ridge, Mid-Atlantic Ridge south of
Iceland, which is divided along its entire length into numerous axial
volcanic ridges (AVR). Five adjacent AVRs have been analysed, located
between 57 deg 30N and 58 deg 30N and south of any strong Iceland hotspot
influence. The seabed morphology of each AVR is investigated using
sidescan sonar data to determine relative age and eruptive history.
Along-axis gravity profiles for each AVR are modelled relative to a
seismically derived crustal reference model, to reveal the underlying
crustal thickness and density structure. Correlating these models with
seabed features, crustal structure, ridge segment morphology and relative
ages, a model of cyclic ridge segmentation is developed in which accretion
results in adjacent AVRs with a range of crustal features which, when
viewed collectively, reveal that second-order segments on the Reykjanes
Ridge have an along-axis length of 70 km and comprise several adjacent
AVRs which, in turn, reflect the pattern of third-order segmentation.
Tectono-magmatic accretion is shown to operate on the scale of individual
AVRs, as well as on the scale of the second-order segment as a whole.


Applegate,B.&Shor, A.N., 1994. The northernMid-Atlantic and Reykjanes
Ridges: Spreading centre morphology between 55◦50N and 63◦00N, J.
geophys. Res., 99, 17935 17 956.
Bazin, S. et al., 2001. Three-dimensional shallowcrustal emplacement at the 9◦03Noverlapping spreading centre on the East Pacific Rise:
between magnetization and tomographic images, J. geophys. Res., 106,
16 101 16 117.
Bunch, A.W.H. & Kennett, B.L.N., 1980. The crustal structure of the Reykjanes Ridge at 59◦30N, Geophys. J. R. astr. Soc., 61, 141 166.
Cande, S.C. & Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. geophys.
100, 6093 6095.
Carbotte, S. & Macdonald, K., 1992. East Pacific Rise 8◦−10◦30N:
of ridge segments and discontinuities from SeaMARC II and threedimensional magnetic studies, J. geophys. Res., 97, 6959 6982.
Carlson, R.L. & Raskin, G.S., 1984. Density of the oceanic crust, Nature, 311, 555 558.
Collier, J.S. & Sinha, M.C., 1992. Seismic mapping of a magma chamber beneath theValu Fa Ridge, Lau Basin, J. geophys. Res., 97, 14 031 14 053.
Cormier, M.-H., Macdonald, K.C. & Wilson, D.S., 1995. A threedimensional gravity analysis of the East Pacific Rise from 18◦ to 21◦30S, J. geophys. Res., 100, 8063 8082.
Day, A.J., Peirce, C. & Sinha, M.C., 2001. Three-dimensional crustal structure and magma chamber geometry at the intermediate-spreading, backarc Valu Fa Ridge, Lau Basin results of a wide-angle seismic tomographic inversion, Geophys. J. Int., 146, 31 52.
DeMets, C., Gordon, R.G., Argus, D.F. & Stein, S., 1990. Current plate motions, Geophys. J. Int., 101, 425 478.
Detrick, R.S., Needham, H.D. & Renard, V., 1995. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33◦N and 40◦N, J. geophys. Res., 100, 3767 3787.
Fleischer, U., 1974. The Reykjanes Ridge: A summary of geophysical data, in Geodynamics of Iceland and the North Atlantic Area, pp. 17 31, ed.
Kristjansson, D., Reidel, Norwell, Massachusetts.
Forsyth, D.W. & Wilson, B., 1984. Three dimensional temperature structure of a ridge-transform-ridge system, Earth planet. Sci. Lett., 70, 355 362.
Fujiwara, T., Lin, J.,Matsumoto, T., Kelemen, P.B., Tucholke, B.E. & Casey, J.F., 2003. Crustal evolution of the Mid-Atlantic Ridge near the Fifteen- Twenty Fracture Zone in the last 5 Ma, Geochem. Geophys. Geosyst., 4(3), 1 25.
Gardiner, A.B., 2003. Segmentation and cycles of crustal accretion at midocean
ridges: a study of the Reykjanes Ridge, PhD thesis, University of Durham (unpublished), p. 177.
Gee, J. & Kent, D., 1994. Variation in layer 2A thickness and the origin of the central anomaly magnetic high, Geophys. Res. Letts., 21, 297 300.
German, C.R. et al., 1994. Hydrothermal activity on the Reykjanes Ridge:
the Steinah oll vent field at 63◦06N, Earth planet. Sci. Lett., 121, 647 654.
Heinson, G.S., Constable, S.C. & White, A., 2000. Episodic melt transport at a mid-ocean ridge inferred from magnetotelluric sounding, Geophys.
Res. Letts., 27, 2317 2320.
Hilton, D.R., Hammerschmidt, K., Loock, G. & Friedrichsen, H., 1993.
and argon isotope systematics of the Lau Basin and Valu Fa Ridge:
evidence of crust/mantle interactions in a back-arc basin, Geochim.
Acta, 57, 2819 2841.
Hooft, E.E. & Detrick, R.S., 1993. The role of density in the accumulation of basaltic melt at mid-ocean ridges, Geophys. Res. Letts., 20, 423 426.
Hooft, E.E., Schouten, H. & Detrick, R.S., 1996. Constraining crustal emplacement processes from the variation in seismic layer 2A thickness at the East Pacific Rise, Earth planet. Sci. Lett., 142, 289 309.
Ito, G., 2001. Reykjanes V -shaped ridges originating from a pulsing and dehydrating mantle plume, Nature, 411, 681 684.
Johnson, H.P.&Atwater, T., 1977. Magnetic study of basalts from the MAR, lat. 37◦N, Geol. soc. Am. Bull., 88, 637 647.
Johnson, H.P. & Hall, J.M., 1978. A detailed rock magnetic and opaque mineralogy study of basalts from the Nazca plate, Geophys. J. R. astr.
Soc., 52, 45 64.
Johnson, H.P., Patten, D.V. & Sager,W.S., 1996. Age-dependent variation in the magnetization of seamounts, J. geophys. Res., 101, 13 701 13 714.
Jones, S.M., White, N. & Maclennan, J., 2002. V-shaped ridges around
implications for spatial and temporal patterns of mantle convection, Geochem. Geophys. Geosyst., 3(10), 1 23.
Karson, J.A., Tivey, M.A. & Delaney, J.R., 2002. Internal structure of uppermost oceanic crust along theWestern Blanco Transform Scarp: implications for subaxial accretion and deformation at the Juan de Fuca Ridge, J. geophys. Res., 107, EPM 1-1 1-24.
Keeton, J.A., Searle, R.C., Parsons, B., White, R.S., Murton, B.J., Parson, L.M., Peirce, C.&Sinha, M.C., 1997. Bathymetry of the Reykjanes Ridge, Marine geophys. Res., 19, 55 64.
Kuo, B.-Y. & Forsyth, D.W., 1988. Gravity anomalies of the ridge-transform system in the south Atlantic between 31◦ and 34.5◦S upwelling centres and variations in crustal thickness, Marine geophys. Res., 10, 205 232.
Lawson, K., Searle, R.C., Pearce, J.A., Browning, P. & Kempton, P., 1996.
Detailed volcanic geology of the MARNOK area, Mid-Atlantic Ridge north of Kane transform, in Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges, Vol. 118, pp. 61 102, eds.
MacLeod, C.J., Tyler, P.A. & Walker, C.L., Geol. Soc. Spec. Pub.
Lee, S.-M. & Searle, R.C., 2000. Crustal magnetization of the Reykjanes Ridge and implications for its along-axis variability and the formation of axial volcanic ridges, J. geophys. Res., 105, 5907 5930.
Lin, J. & Phipps Morgan, J., 1992. The spreading rate dependence of threedimensional mid-ocean ridge gravity structure, Geophys. Res. Letts., 19, 13 16.
Lin, J., Purdy, G.M., Schouten, H., Sempere, J.C. & Zervas, C., 1990.
from gravity data for focused magmatic accretion along the Mid- Atlantic Ridge, Nature, 344, 627 632.
Lowrie,W., 1977. Intensity and direction of magnetization in oceanic basalts, J. geol. Soc. Lon., 133, 61 82.
Macdonald, K.C., 1977. Near-bottom magnetic anomalies, asymmetric spreading, oblique spreading and tectonics of the Mid-Atlantic Ridge near 37◦N, Geol. soc. Am. Bull., 88, 541 555.
Macdonald, K.C., Miller, S.P., Huestis, S.P. & Spiess, F.N., 1980.
modelling of a magnetic reversal boundary from inversion of deep-tow measurements, J. geophys. Res., 85, 3670 3680.
MacGregor, L.M., Constable, S. & Sinha, M.C., 1998. The RAMESSES experiment
III: controlled source electromagnetic sounding of the Reykjanes Ridge at 57◦45N, Geophys. J. Int., 135, 772 789.
Magde, L.S., Detrick, R.S. & the, TERA group, 1995. Crustal and upper mantle contribution to the axial gravity anomaly at the southern East Pacific Rise. J. geophys. Res., 100, 3747 3766.
Nafe, J.E. & Drake, C.L., 1957. Variation with depth in shallow and deep water marine sediment of porosity, density and the velocities of compressional and shear waves, Geophysics, 22, 523 553.
Nafe, J.E. & Drake, C.L., 1962. Physical properties of marine sediments.
The Sea, Vol. 3, pp. 794 815, ed. Hill, M.N., Wiley, New York.
Navin,D.A., Peirce, C.&Sinha, M.C., 1998. TheRAMESSESexperiment II. Evidence for accumulated melt beneath slow-spreading ridge from wide-angle refraction and multichannel reflection seismic profiles, Geophys.
J. Int., 135, 746 772.
Owens, R.B., 1991. An investigation of marine anomalies from Reykjanes Ridge 58◦N 32◦20W, MSc thesis, University of Durham (unpublished), p. 54.
Parker, R.L. & Huestis, S.P., 1974. The inversion of magnetic anomalies in the presence of topography, J. geophys. Res., 79, 1587 1593.
Parson L.M., 1993. Sidescan sonar and swath bathymetry investigation of the Reykjanes Ridge, southwest of Iceland, R/V Maurice Ewing EW9008 Cruise Report (unpublished), p. 8.
Parson, L.M. et al., 1993. En echelon axial volcanic ridges at the Reykjanes
Ridge: a life cycle of volcanism and tectonics, Earth planet. Sci. Lett., 117, 73 87.
Pedley, R.C., Busby, J.P. & Dabek, Z.K., 1993. GRAVMAG User Manual Interactive 2.5D gravity and magnetic modelling, British Geological Survey, Technical Report WK/93/26/R, p. 73.
Peirce, C. & Navin, D.A., 2002. The RAMESSES experiment-V. Crustal accretion at axial volcanic ridge segments-a gravity study at 57◦45N on the slow-spreading Reykjanes Ridge, Geophys. J. Int., 149, 76 94.
Peirce, C. & Sinha, M.C., 1998. RAMESSES II Reykjanes Ridge axial melt experiment: structural synthesis from electromagnetics and seismic, RRS Discovery 235c Cruise Report (unpublished), p. 38.
Peirce, C., Turner, I.M. & Sinha, M.C., 2001. Crustal structure, accretionary processes and rift propagation: a gravity study of the intermediatespreading Valu Fa Ridge, Geophys. J. Int., 146, 53 173.
Peirce, C., Sinha, M.C., Topping, S. & Gill, C., 2005. Morphology and genesis of slow-spreading ridges seabed scattering and seismic imaging within the oceanic crust, Geophys. J. Int., in prep.
Phipps Morgan, J. & Forsyth, D.W., 1988. Three-dimensional flow and temperature perturbations due to a transformoffset: effects on oceanic crustal and mantle structure, J. geophys. Res., 93(B4), 2955 2966.
Prince, R.A. & Forsyth, D.W., 1988. Horizontal extent of anomalously thin crust near the Vema fracture zone from the 3-D analysis of gravity anomalies, J. geophys. Res., 93, 8051 8063.
Rouse, I.P., 1991. TOBI: a deep-towed sonar system, in colloquium on Civil applications of sonar systems , Institute of Electrical Engineers, Digest no. 1991/028, 7/1 7/5.
Sandwell, D.T. & Smith, W.H.F., 1997. Marine gravity anomaly from Geosat and ERS-1 satellite Altimetry, J. geophys. Res., 102, 10 039 10 054.
Sauter,D., Parson, L., Mendel,V., Rommevaux-Jestin, C., Gomez,O., Briais, A., Mevel, C., Tamaki, K. & the FUJI scientific team, 2002. TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge:
evidence for along-axis magma distribution, Earth planet. Sci. Lett., 199, 81 95.
Schouten, H., Tivey, M.A., Fornari, D.J. & Cochran J.R., 1999. Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at 9◦30 50N, Earth planet. Sci. Lett., 169, 37 50.
Searle, R.C., Field, P.R. & Owens, R.B., 1994a. Segmentation and a nontransformridge offset on the Reykjanes Ridge near 58◦N, J. geophys. Res., 99, 24 159 24 172.
Searle, R.C., Parsons, B.E. & White, R.S., 1994b. Multibeam bathymetric and potential field studies of the Reykjanes Ridge, RRS Charles Darwin
87 Cruise Report (unpublished), p. 43.
Searle, R.C., Keeton, J.A., Owens, R.B., White, R.S., Mecklenburgh, R., Parsons, B. & Lee, S.-M., 1998. The Reykjanes Ridge: Structure and tectonics of a hotspot influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations, Earth planet. Sci.
160, 463 478.
Sinha, M.C., Peirce, C. & Constable, S., 1994. An integrated geophysical investigation of the axial volcanic region of the Reykjanes Ridge at 57◦45N, RRS Charles Darwin 81 Cruise report (unpublished), p. 39.
Sinha, M.C., Navin,D.A., MacGregor, L.M., Constable, S., Peirce, C., White, A., Heinson, G. & Inglis, M.A., 1997. Evidence for accumulated melt beneath the slow-spreading Mid-Atlantic Ridge, Phil. Trans. R. Soc. Lond., A, 355, 233 253.
Sinha, M.C., Constable, S., Peirce, C., White, A., Heinson, G., MacGregor, L.M. & Navin, D.A., 1998. Magmatic processes at slow-spreading ridges:
implications of the RAMESSES experiment, Mid-Atlantic Ridge at 57◦N, Geophys. J. Int., 135, 731 745.
Smallwood, J.R., White, R.S.&Minshull, T.A., 1995. Sea-floor spreading in the presence of the Iceland plume the structure of the Reykjanes Ridge at 61◦40N, J. geol. Soc. Lond., 152, 1023 1029.
Sohn, R.A., Webb, S.C., Hildebrand, J.A. & Cornuelle, B.D., 1997.
tomographic velocity structure of the upper crust, CoAxial segment, Juan de Fuca Ridge: implications for on-axis evolution and hydrothermal circulation, J. geophys. Res., 102, 17 679 17 695.
Sparks, D.W., Parmentier, E.M. & Phipps Morgan, J., 1993.
mantle convection beneath a segmented spreading centre:
implications for along-axis variations in crustal thickness and gravity, J.
geophys. Res., 98, 21 977 21 995.
Stewart, M.A, Klein, E.M. & Karson, J.A., 2002. Geochemistry of dikes and lavas from the north wall of the Hess Deep Rift: insights into the fourdimensional character of crustal construction at fast-spreading mid-ocean ridges, J. geophys. Res., 107, EPM 4-1 4-23.
Talwani, M., Windsich, C.C. & Langseth, M.G., 1971. Reykjanes Ridge
Crest: a detailed geophysical study, J. geophys. Res., 76, 473 517.
Thatcher, W. & Hill, D.P., 1995. A simple model for the fault-generated morphology of slow-spreading mid-ocean ridges, J. geophys. Res., 100, 561 570.
Tolstoy, M., Harding, A.J. & Orcutt, J.A., 1993. Crustal thickness on the Mid-Atlantic Ridge: Bull s-eye gravity anomalies and focused accretion, Science, 263, 726 729.
Topping, S., 2002. RAMESSES II: seismic reflections at the Mid-Atlantic ridge from analysis of real and synthetic data, PhD thesis, University of Cambridge (unpublished), pp. 196.
Turner, I.M., Peirce, C. & Sinha, M.C., 1999. Seismic imaging of the axial region of the Valu Fa Ridge, Lau Basin the accretionary processes of an intermediate back-arc spreading ridge, Geophys. J. Int., 138, 495 519.
Vogt, P.R., 1971. Asthenospheric motion recorded by the ocean floor south of Iceland, Earth planet. Sci. Lett., 13, 153 160.
Weir, N.R.W., White, R.S., Brandsdottir, B., Einarsson, P., Shimamura, H., Shiobara, H. & the RISE Fieldwork Team, 2001. Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland, J. geophys. Res., 106, 6347 6368.
Wessel, P. & Smith, W.H.F., 1995. New version of the Generic Mapping Tools released, EOS, Trans. Am. geophys. Un., 76, 329.
White, R.S.,McKenzie,D.&O Nions, R.K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions, J. geophys.
Res., 97, 19 683 19 715.
White, S.M., Haymon, R.M., Fornari, D.J., Perfit, M.R. & Macdonald, K.C., 2002. Correlation between volcanic and tectonic segmentation of fastspreading
ridges: evidence from volcanic structures and lava flow morphology on the East Pacific Rise at 9◦ 10◦N, J. geophys. Res., 107, EPM 7-1 7-20.
Wright,D.J.,Haymon, R.M., White, S.M.&Macdonald, K.C., 2002. Crustal fissuring on the crest of the southern East Pacific Rise at 17◦15N-40S, J. geophys. Res., 107, EPM 5-1 5-14.