Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Postgraduate Students

Publication details for Prof. Chris Greenwell

Racionero-Gómez, B., Sproson, A.D., Selby, D., Gröcke, D.R., Redden, H. & Greenwell, H.C. (2016). Rhenium uptake and distribution in phaeophyceae macroalgae, Fucus vesiculosus. Royal Society Open Science 3(5): 160161.

Author(s) from Durham

Abstract

Owing to Rhenium (Re) having no known biological role, it is not fully understood how Re is concentrated in oil kerogens. A commonly held assumption is that Re is incorporated into decomposing biomass under reducing conditions. However, living macroalgae also concentrate Re to several orders of magnitude greater than that of seawater. This study uses Fucus vesiculosus to assess Re uptake and its subsequent localization in the biomass. It is demonstrated that the Re abundance varies within the macroalgae and that Re is not located in one specific structure. In F. vesiculosus, the uptake and tolerance of Re was evaluated via tip cultures grown in seawater of different Re(VII) compound concentrations (0–7450 ng g−1). A positive correlation is shown between the concentration of Re-doped seawater and the abundance of Re accumulated in the tips. However, significant differences between Re(VII) compounds are observed. Although the specific cell structures where the Re is localized is not known, our findings suggest that Re is not held within chloroplasts or cytoplasmic proteins. In addition, metabolically inactivated F. vesiculosus does not accumulate Re, which indicates that Re uptake is via syn-life bioadsorption/bioaccumulation and that macroalgae may provide a source for Re phytomining and/or bioremediation.