Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Earth Sciences

Current Postgraduate Students

Publication details for Prof Gillian Foulger

Foulger, G.R. (2012). Are 'hot spots' hot spots? Journal of Geodynamics 58: 1-28.

Author(s) from Durham

Abstract

The term ‘hot spot’ emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a ‘normal’ mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ∼200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40–50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200–300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been built by volcanism distributed throughout hundreds, even thousand of kilometres, and as yet no unequivocal evidence has been produced that any of them have high temperature anomalies compared with average mantle temperature for the same (usually unknown) depth elsewhere. Critical investigation of the genesis processes of ‘anomalous’ volcanic regions would be encouraged if use of the term ‘hot spot’ were discontinued in favour of one that does not assume a postulated origin, but is a description of unequivocal, observed characteristics.