Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Email and Telephone Directory

Staff Profile

Professor Brian Straughan

Telephone: +44 (0) 191 33 43102
Room number: CM218
Leader of Work Package 3 in Tipping Points Research Project
Room number: CM223

Contact Professor Brian Straughan (email at brian.straughan@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Computational Applied Mathematics
  • Numerical Analysis

Research Interests

  • Computational mathematics
  • Partial differential equations
  • Stability

Publications

Books: sections

  • B. Straughan (2001). Porous Convection, the Chebyshev Tau Method, and Spurious Eigenvalues. In Continuum Mechanics and Applications in Geophysics and the Environment. Straughan, B. Greve, R. Ehrentraut, H. & Wang, Y. Springer. 140-152.

Journal papers: academic

  • Straughan, B (2013). Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469(2157): 20130187.
  • Straughan, B (2012). Triply resonant penetrative convection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468(2148): 3804-3823.
  • Straughan, B (2011). Tipping points in Cattaneo-Christov thermohaline convection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467(2125): 7-18.
  • Straughan, B (2010). Green-Naghdi fluid with non-thermal equilibrium effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466(2119): 2021-2032.
  • Payne, LE & Straughan, B (2009). Decay for a Keller-Segel chemotaxis model. Studies in Applied Mathematics 123(4): 337-360.
  • Hill, AA & Straughan, B (2009). Global stability for thermal convection in a fluid overlying a highly porous material. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465(2101): 207-217.
  • Mulone, G & Straughan, B (2009). Nonlinear stability for diffusion models in biology. SIAM Journal on Applied Mathematics 69(6): 1739-1758.
  • Hill, A. A. & Straughan, B. (2008). Poiseuille flow in a fluid overlying a porous medium. Journal of Fluid Mechanics 603: 137-149.
  • R. Quintanilla & B. Straughan (2004). Discontinuity waves in type III thermoelasticity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 460: 1169-1175.
  • J.I. Diaz & B. Straughan (2004). Global stability for convection when the viscosity\r\nhas a maximum. Continuum Mechanics and Thermodynamics 16: 347-352.
  • M. Carr (2004). Penetrative convection in a superposed porous-medium-fluid layer via internal heating. Journal of Fluid Mechanics 509: 305-329.
  • B. Straughan (2004). The energy method, stability, and nonlinear convection.
  • M. Carr (2003). A model for convection in the evolution of under-ice melt ponds. Continuum Mechanics and Thermodynamics 15: 45-54.
  • F. Franchi & B. Straughan (2003). Continuous dependence and decay for the Forchheimer equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 459: 3195-3202.
  • B. Straughan (2003). Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues. Continuum Mechanics and Thermodynamics 15: 571-579.
  • M. Carr & B. Straughan (2003). Penetrative convection in a fluid overlying a porous layer. Advances in Water Resources 26: 263--276.
  • M. Carr (2003). Unconditional nonlinear stability for temperature dependent density flow in a porous medium. Mathematical Models and Methods in Applied Sciences 13: 207-222.
  • B. Straughan (2002). Effect of property variation and modelling on convection\nin a fluid overlying a porous layer. International Journal for Numerical and Analytical Methods in Geomechanics 26: 75-97.
  • Quintanilla, R. & Straughan, B. (2002). Explosive instabilities in heat transmission. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 458: 2833-2837.
  • Straughan, B. (2002). Global stability for convection induced by absorption of radiation. Dynamics of Atmospheres and Oceans 35(4): 351-361.
  • Straughan, B. (2002). Sharp global nonlinear stability for temperature dependent viscosity convection. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences 458(2023): 1773-1782.
  • Franchi, F. & Straughan, B. (2001). A comparison of the Graffi and Kazhikov-Smagulov models for top heavy pollution instability. Advances in Water Resources 24: 585-594.
  • Straughan, B. (2001). A sharp nonlinear stability threshold in rotating porous convection. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences 457(2005): 87-93.
  • L.E. Payne, J.F. Rodrigues & B. Straughan (2001). Effect of anisotropic permeability on Darcy's Law. Mathematical Methods in the Applied Sciences 24: 427-438.
  • B. Straughan (2001). Surface tension driven convection in a fluid overlying\na porous layer. Journal of Computational Physics 170 : 320-337.
  • Payne, L.E. & Straughan, B. (2000). A naturally efficient numerical technique for porous convection stability with non-trivial boundary conditions. International Journal for Numerical and Analytical Methods in Geomechanics 24: 815-836.
  • Quintanilla R. & Straughan, B. (2000). Growth and uniqueness in thermoelasticity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 456 : 1419-1429.
  • Payne, L.E. & Straughan, B. (2000). Unconditional nonlinear stability in temperature - dependent viscosity flow in a porous medium. Studies in Applied Mathematics 105 : 59-81.
  • Payne, L.E., Song J.C. & Straughan, B. (1999). Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 455 : 2173-2190.
  • Payne, L.E. & Straughan, B. (1999). Convergence for the equations for a Maxwell fluid. Studies in Applied Mathematics 103 : 267-278.
  • Payne, L.E. & Straughan, B. (1999). Convergence, continuous dependence and decay for the Brinkman--Forchheimer equations. Studies in Applied Mathematics 102 : 419-439.
  • Payne, L.E. & Straughan, B. (1999). Effect of errors in the spatial geometry for temperature dependent Stokes flow. Journal de Mathématiques Pures et Appliquées 78: 609-632.
  • Payne, L.E. & Straughan, B. (1998). Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modeling questions. Journal de Mathématiques Pures et Appliquées 77: 317-354.
  • Payne, L.E. & Straughan, B. (1998). Structural stability for the Darcy equations of flow in porous media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454 : 1691-1698.
  • Straughan, B. & D.W. Walker (1997). Multi component diffusion and penetrative convection. Fluid Dynamics Research 19: 77-89.
  • K. Hutter & Straughan, B. (1997). Penetrative convection in thawing subsea permafrost. Continuum Mechanics and Thermodynamics 9: 259--272.
  • Straughan, B. & Walker, D.W. (1996). Anisotropic porous penetrative convection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 452: 97-115.
  • Dongarra, J.J., Straughan, B. & Walker, D.W. (1996). Chebyshev tau - QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Applied Numerical Mathematics 22: 399-435.
  • Payne, L.E. & Straughan, B. (1996). Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media. Journal de Mathématiques Pures et Appliquées 75: 225-271.
  • F. Franchi & Straughan, B (1996). Structural stability for the Brinkman equations of porous media. Mathematical Methods in the Applied Sciences 19: 1335-1347.
  • Straughan, B. & Walker, D.W. (1996). Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. Journal of Computational Physics 127: 128141.
  • Mulone, G., Rionero S. & Straughan, B. (1996). Unconditional nonlinear stability in a polarized dielectric liquid. Atti della Accademia Nazionale dei Lincei Ser. IX(7): 241--252.

Supervises