Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Jochen Einbeck, PhD Ludwig Maximilian University of Munich

Personal web page

Associate Professor, Statistics in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 43125
Room number: CM226
Co-Director (Health Data Science) in the Durham Research Methods Centre

Contact Jochen Einbeck (email at jochen.einbeck@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Probability & Statistics: Statistics
  • Probability and Statistics

Research Interests

  • Mixture models
  • Nonparametric regression
  • Principal curves
  • Random effect modelling

Teaching Areas

  • Statistical Methods III (50 hours/year.)

Publications

Edited book

  • Ainsbury, E.A., Calle, M.L. Cardis, E., Einbeck, J., Gómez, G. & Puig, P. (2017). Extended Abstracts Fall 2015. Biomedical Big Data; Statistics for Low Dose Radiation Research. Research Perspectives CRM Barcelona. Springer.
  • Hinde, John, Einbeck, Jochen & Newell, John (2006). Proceedings of the 21st International Workshop on Statistical Modelling. Galway, Ireland, 3-7 July 2006. National University of Ireland, Galway.

Chapter in book

  • Einbeck, Jochen, Ainsbury, Elizabeth, Barnard, Stephen, Oliveira, Maria, Manning, Grainne, Puig, Pere & Badie, Christophe (2017). On the Use of Random Effect Models for Radiation Biodosimetry. In Extended Abstracts Fall 2015. Ainsbury, E., Calle, M., Cardis, E., Einbeck, J., Gómez, G. & Puig, P. Cham: Springer. 7: 89-94.
  • Julian, B.R., Foulger, G.R., Hatfield, O., Jackson, S.E., Simpson, E., Einbeck, J. & Moore, A. (2015). Hotspots in Hindsight. In The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson. Foulger, G.R., Lustrino, M. & King, S.D. Boulder, Colorado Washington, DC: The Geological Society of America / AGU. 105-121.
  • Einbeck, Jochen, Evers, Ludger & Bailer-Jones, Coryn (2008). Representing complex data using localized principal components with application to astronomical data. In Lecture Notes in Computational Science and Engineering. Gorban, A Kegl, B Wunsch, D & Zinovyev, A Heidelberg: Springer-Verlag. 58: 180-204.

Journal Article

  • Einbeck, Jochen, Kalantan, Zakiah & Kruger, Uwe (2020). Practical Considerations on Nonparametric Methods for Estimating Intrinsic Dimensions of Nonlinear Data Structures. International Journal of Pattern Recognition and Artificial Intelligence 34(9): 2058010.
  • Reissland, N., Millard, A., Wood, R., Ustun, B., McFaul, C., Froggatt, S. & Einbeck, J. (2020). Prenatal effects of maternal nutritional stress and mental health on the fetal movement profile. Archives of Obstetrics and Gynaecology
  • Wilson, Paul & Einbeck, Jochen (2019). A graphical tool for assessing the suitability of a count regression model. Austrian Journal of Statistics
  • Wilson, Paul & Einbeck, Jochen (2019). A new and intuitive test for zero modification. Statistical Modelling 19(4): 341-361.
  • Kalantan, Zakiah I. & Einbeck, Jochen (2019). Quantile-Based Estimation of the Finite Cauchy Mixture Model. Symmetry 11(9): 1186.
  • Einbeck, Jochen, Ainsbury, Elizabeth A., Sales, Rachel, Barnard, Stephen, Kaestle, Felix & Higueras, Manuel (2018). A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLOS ONE 13(11): e0207464.
  • Marques da Silva Júnior, Antonio Hermes, Einbeck, Jochen & Craig, Peter S. (2018). Fisher information under Gaussian quadrature models. Statistica Neerlandica 72(2): 74-89.
  • Qarmalah, Najla M., Einbeck, Jochen & Coolen, Frank P.A. (2018). k-Boxplots for mixture data. Statistical Papers 59(2): 513-528.
  • Qarmalah, Najla M., Einbeck, Jochen & Coolen, Frank P.A. (2017). Mixture Models for Prediction from Time Series, with Application to Energy Use Data. Archives of Data Science Series A 2(1): 1-15.
  • Einbeck, Jochen & Meintanis, Simos (2017). Self–consistency–based tests for bivariate distributions. Journal of Statistical Theory and Practice 11(3): 478-492
  • Ainsbury, Elizabeth A., Higueras, Manuel, Puig, Pedro, Einbeck, Jochen, Samaga, Daniel, Barquinero, Joan F., Barrios, Lleonard, Brzozowska, Beata, Fattibene, Paola, Gregoire, Eric, Jaworska, Alicija, Lloyd, David, Oestreicher, Ursula, Romm, Horst, Rothkamm, Kai, Roy, Lawrence, Sommer, Sylwester, Terzoudi, Georgia, Thierens, Hubert, Trompier, Francois, Vral, Anne & Woda, Clemens (2017). Uncertainty of fast biological radiation dose assessment for emergency response scenarios. International Journal of Radiation Biology 93(1): 127-135.
  • Jackson, Samuel E., Einbeck, Jochen, Kasim, Adetayo & Talloen, Willem (2016). The correlation threshold as a strategy for gene filtering, with application to irritable bowel syndrome and breast cancer microarray data. Reinvention: an International Journal of Undergraduate Research 9(2).
  • Oliveira, María, Einbeck, Jochen, Higueras, Manuel, Ainsbury, Elizabeth, Puig, Pedro & Rothkamm, Kai (2016). Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study. Biometrical Journal 58(2): 259-279.
  • Einbeck, Jochen, Jackson, Samuel E. & Kasim, Adetayo (2015). A summer with genes: Simple disease classification from microarray data. Mathematics Today 51(4): 186-188.
  • Meintanis, Simos & Einbeck, Jochen (2015). Validation tests for semi-parametric models. Journal of Statistical Computation and Simulation 85(1): 131-146.
  • Back, J.J., Barker, G.J., Boyd, S.B., Einbeck, J., Haigh, M., Morgan, B., Oakley, B., Ramachers, Y.A. & Roythorne, D. (2014). Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volume. The European Physical Journal C 74(3): 2832.
  • Einbeck, Jochen & Zayed, Mohammad (2014). Some asymptotics for localized principal components and curves. Communications in Statistics - Theory and Methods 43(8): 1736-1749.
  • Einbeck, Jochen & Taylor, James (2013). A number-of-modes reference rule for density estimation under multimodality. Statistica Neerlandica 67(1): 54-66.
  • Taylor, James & Einbeck, Jochen (2013). Challenging the curse of dimensionality in multivariate local linear regression. Computational Statistics 28(3): 955-976.
  • Einbeck, Jochen (2013). Discussion of ‘Beyond mean regression’. Statistical Modelling 13(4): 349-354.
  • Meintanis, Simos & Einbeck, Jochen (2012). Goodness-of-fit tests in semi-linear models. Statistics and Computing 22(4): 967-979.
  • Einbeck, Jochen (2011). Bandwidth Selection for Mean-shift based Unsupervised Learning Techniques: a Unified Approach via Self-coverage. Journal of Pattern Recognition Research 6(2): 175-192.
  • Einbeck, Jochen & Dwyer, Jo (2011). Using principal curves to analyze traffic patterns on freeways. Transportmetrica 7(3): 229-246.
  • Einbeck, Jochen, Evers, Ludger & Powell, Benedict (2010). Data compression and regression through local principal curves and surfaces. International Journal of Neural Systems 20(3): 177-192.
  • Einbeck, Jochen & Augustin, Thomas (2009). On design-weighted local fitting and its relation to the Horvitz-Thompson estimator. Statistica Sinica 19(1): 103-123.
  • Einbeck, Jochen, Hinde, John & Darnell, Ross (2007). A new package for fitting random effect models. R News 7(1): 26-30.
  • Newell, John, Higgins, D., Madden, N. Cruickshank, J., Einbeck, J., McMillan, K. & McDonald, R (2007). Software for calculating blood lactate endurance markers. Journal of Sports Sciences 25(12): 1403-1409.
  • Fried, Roland, Einbeck, Jochen & Gather, Ursula (2007). Weighted Repeated Median Smoothing and Filtering. Journal of the American Statistical Association 102(480): 1300-1308.
  • Einbeck, Jochen & Hinde, John (2006). A note on NPML estimation for exponential family regression models with unspecified dispersion parameter. Austrian Journal of Statistics 35(2&3): 233-243.
  • Einbeck, Jochen & Tutz, Gerhard (2006). Modelling beyond regression functions: An application of multimodal regression to speed-flow data. Applied statistics a journal of the Royal Statistical Society 55(4): 461-475.
  • Einbeck, Jochen, Tutz, Gerhard & Evers, Ludger (2005). Local Principal Curves. Statistics and Computing 15(4): 301-313.
  • Einbeck, Jochen (2004). A Simple Unifying Formula for Taylor's Theorem and Cauchy's Mean Value Theorem. International Journal of Pure and Applied Mathematics 14(1): 69-74.
  • Einbeck, Jochen (2004). Local fitting with a power basis. REVSTAT- Statistical Journal 2(2): 102-126.
  • Einbeck, Jochen, Andre, Carmen D.S. & Singer, Julio M. (2004). Local Smoothing with Robustness against outlying Predictors. Environmetrics 15(6): 541-554.
  • Einbeck, Jochen (2003). Multivariate Local Fitting with General Basis Functions. Computational Statistics 18(2): 185-203.
  • Einbeck, Jochen & Kauermann, Goeran (2003). Online Monitoring with Local Smoothing Methods and Adaptive Ridging. Journal of Statistical Computation and Simulation 73(12): 913-929.

Conference Paper

  • Einbeck, J., Gray, E., Sofroniou, N., Marques da Silva Junior, A. H. & Gledhill, J. (2017), Con fidence intervals for posterior intercepts, with application to the PIAAC literacy survey, in Grzegorczyk, M. & Ceoldo, G. eds, 1: International Workshop on Statistical Modelling. Groningen, University of Groningen, Groningen, 217-222.
  • Einbeck, Jochen & Wilson, Paul (2016), A diagnostic plot for assessing model fit in count data models, in Dupuy, J.F. & Josse, J. eds, I: International Workshop on Statistical Modelling. Rennes, France, Statistical Modelling Society, 103-108.
  • da Silva-Junior, A.H.M., Einbeck, J. & Craig, P.S. (2016), Gradient test for generalised linear models with random effects, in Dupuy, J.F. & Josse, J. eds, I: International Workshop on Statistical Modelling. Rennes, France, Statistical Modelling Society, 213-218.
  • Wilson, Paul & Einbeck, Jochen (2016), On statistical testing and mean parameter estimation for zero-modification in count data regression, in Dupuy, J.F. & Josse, J. eds, I: International Workshop on Statistical Modelling. Rennes, Statistical Modelling Society, 327-332.
  • Wilson, Paul & Einbeck, Jochen (2015), A simple and intuitive test for number-inflation or number-deflation, in Wagner, Helga & Friedl, Herwig eds, 2: 30th International Workshop on Statistical Modelling. Linz, Austria, Statistical Modelling Society, Linz, 299-302.
  • Einbeck, Jochen & Bonetti, Daniel (2014), A study of online and blockwise updating of the EM algorithm for Gaussian mixtures, in Kneib, Thomas, Sobotka, Fabian, Fahrenholz, Jan & Irmer, Henriette eds, Proceedings of the 29th International Workshop on Statistical Modelling. Göttingen, Germany, 14-18 July 2014 II: 29th International Workshop on Statistical Modelling. Göttingen, University of Göttingen, Göttingen, 35-38.
  • Tsiftsi, Thomai, Jermyn, Ian & Einbeck, Jochen (2014), Bayesian shape modelling of cross-sectional geological data, in Kneib, Thomas, Sobotka, Fabian, Fahrenholz, Jan & Irmer, Henriette eds, II: 29th International Workshop on Statistical Modelling. Göttingen, University of Göttingen, Göttingen, 161-164.
  • Bonetti, Daniel, Delbem, Alexandre & Einbeck, Jochen (2014), Bivariate Estimation of Distribution Algorithms for Protein Structure Prediction, in Kneib, Thomas, Sobotka, Fabian, Fahrenholz, Jan & Irmer, Henriette eds, II: 29th International Workshop on Statistical Modelling. Göttingen, Germany, Georg August University Göttingen, Göttingen, 15-18.
  • Lawson, Antony & Einbeck, Jochen (2012), Generative linear mixture modelling, in Komarek, Arnost & Nagy, Stanislav eds, Proceedings of the international workshop on statistical modelling 2: International workshop on statistical modelling. Prague, Statistical Modeling Society, Prague, 595-600.
  • Kalantan, Zakiah & Einbeck, Jochen (2012), On the computation of the correlation integral for fractal dimension estimation, IEEE conference publications International Conference on Statistics in Science, Business, and Engineering (ICSSBE). Langkawi, Kedah, Malaysia Langkawi, Kedah, 80-85.
  • Einbeck, J., Isaac, B., Evers, L. & Parente, A. (2012), Penalized regression on principal manifolds with application to combustion modelling, in Komarek, A. & Nagy, S. eds, 1: International workshop on statistical modelling. Prague, Statistical Modeling Society, Prague, 117-122.
  • Taylor, James & Einbeck, Jochen (2011), Multivariate regression smoothing through the 'fallling net', in Conesa, David, Forte, Anabel, Lopez-Quilez, Antonio & Munoz, Facundo eds, 26th international workshop on statistical modelling. Valencia, Statistical Modelling Society, Valencia, 597-602.
  • Zayed, Mohammad & Einbeck, Jochen (2010), Constructing Economic Summary Indexes via Principal Curves, in Yves Lechevallier & Gilbert Saporta eds, COMPSTAT 2010. Paris, France, Springer, Paris, 1709-1716.
  • Einbeck, J, Evers, L & Hinchliff, K (2010), Data compression and regression based on local principal curves, in Fink, A, Lausen, B, Seidel, W & Ultsch, A eds, Studies in Classification, Data Analysis, and Knowledge Organization 32nd annual Conference of the German Classification Society. Hamburg, Springer, Hamburg, 701-712.
  • Einbeck, Jochen & Evers, Ludger (2010), Localized regression on principal manifolds, in Bowman, Adrian eds, 25th International Workshop on Statistical Modelling. Glasgow, University of Glasgow, Glasgow, 179-184.
  • Taylor, James & Einbeck, Jochen (2010), Strategies for local smoothing in high dimensions: using density thresholds and adapted GCV, in Bowman, Adrian eds, 25th International Workshop on Statistical Modelling. Glasgow, Scotland, University of Glasgow, Glasgow, 525-528.
  • Sofroniou, Nick, Hoad, Dominique & Einbeck, Jochen (2008), League tables for literacy survey data based on random effect models, in Eilers, Paul. eds, 23rd international workshop on statistical modelling. Utrecht, Statistical Modelling Society, Utrecht, 402-405.
  • Newell, John. & Einbeck, Jochen. (2007), A comparative study of nonparametric derivative estimators, in del Castillo, Joan., Espinal, Anna. & Puig, Pere. eds, Proceedings of the IWSM 22nd International Workshop on Statistical Modelling. Barcelona, Spain., IDESCAT, Barcelona, 453-456.
  • Einbeck, Jochen, Augustin, Thomas & Singer, Julio M. (2007), Smoothing, Sampling, and Basu's elephants, in del Castillo, Joan, Espinal, Anna & Puig, Pere eds, Proceedings of the IWSM 22nd International Workshop on Statistical Modelling. Barcelona, Spain., IDESCAT, Barcelona, 245-248.
  • Sofroniou, Nick, Einbeck, Jochen & Hinde, John (2006), Analyzing Irish suicide rates with mixture models, in Hinde, John, Einbeck, Jochen & Newell, John eds, Proceedings of the IWSM 21th International Workshop on Statistical Modelling. Galway, Ireland, National University of Ireland, Galway, 474-481.
  • Einbeck, Jochen & Tutz, Gerhard (2006), The fitting of multifunctions: an approach to nonparametric multimodal regression, in Rizzi, A. & Vichi, M. eds, Proceedings in Computational Statistics COMPSTAT. Rome, Italy., Physica-Verlag, Rome, 1251-1258.
  • Einbeck, Jochen, Tutz, Gerhard & Evers, Ludger (2005), Exploring Multivariate Data Structures with Local Principal Curves, in Weihs, C. & Gaul, W. eds, Studies in classification data analysis and knowledge organization 28th Annual Conference of the German Classification Society. Magedeburg, Germany, Springer-Verlag, Magedeburg, 256-263.
  • Newell, John, Einbeck, Jochen , Madden, Niall & McMillan, Kenny (2005), Model free endurance markers based on the second derivative of blood lactate curves, in Francis, A.R. Matawie, K.M. Oshlack, A. & Smyth, G.K. eds, Proceedings of the IWSM 20th International Workshop on Statistical Modelling. Sydney, Statistical Modelling Society, Sydney, 357-364.

Doctoral Thesis

  • Jochen Einbeck (2003). Local Smoothing Methods for the Analysis of Multivariate Complex Data Structures. Institut fuer Statistik. LMU Muenchen. PhD.

Supervises