Staff Profile

Andrew Lobb, PhD Harvard University
Professor, Topology in the Department of Mathematical Sciences
Research Groups
Department of Mathematical Sciences
- Pure Mathematics
- Pure Mathematics: Topology
Research Interests
- Low-dimensional topology
- Knot theory
- Smooth 4-manifolds
- Categorification
Publications
Journal Article
- Lobb, Andrew, Orson, Patrick & Schuetz, Dirk (2020). Khovanov homotopy calculations using flow category calculus. Experimental Mathematics 29(4): 475-500.
- Lobb, Andrew & Zentner, Raphael (2020). On spectral sequences from Khovanov homology. Algebraic and Geometric Topology 20(2): 531-564.
- Lobb, Andrew (2019). A counterexample to Batson's conjecture. Mathematical Research Letters 26(6): 1789-1789.
- Jones, Dan, Lobb, Andrew & Schuetz, Dirk (2019). An sl(n) stable homotopy type for matched diagrams. Advances in Mathematics 356: 106816.
- Baldwin, John, Hedden, Matthew & Lobb, Andrew (2019). On the functoriality of Khovanov-Floer theories. Advances in Mathematics 345: 1162-1205.
- Cincotti, Antonio, Maucher, Fabian, Evans, David, Chapin, Brette M., Horner, Kate, Bromley, Elizabeth, Lobb, Andrew, Steed, Jonathan W. & Sutcliffe, Paul (2019). Threaded Rings that Swim in Excitable Media. Physical Review Letters 123(25): 258102.
- Lewark, Lukas & Lobb, Andrew (2019). Upsilon-like concordance invariants from sl(n) knot cohomology. Geometry and Topology 23(2): 745-780.
- Lobb, Andrew, Orson, Patrick & Schuetz, Dirk (2018). Framed cobordism and flow category moves. Algebraic & Geometric Topology 18: 2821-2858.
- Lobb, Andrew, Orson, Patrick & Schuetz, Dirk (2017). A Khovanov stable homotopy type for colored links. Algebraic and Geometric Topology 17(2): 1261-1281.
- Lobb, Andrew, Jones, Daniel & Schuetz, Dirk (2017). Morse moves in flow categories. Indiana University Mathematics Journal 66(5): 1603-1657.
- Lewark, Lukas & Lobb, Andrew (2016). New Quantum Obstructions to Sliceness. Proceedings of the London Mathematical Society 112(1): 81-114.
- Lobb, Andrew (2014). 2–strand twisting and knots with identical quantum knot homologies. Geometry & Topology 18(2): 873-895
- Lobb, Andrew (2014). The Kanenobu knots and Khovanov-Rozansky homology. Proceedings of the American Mathematical Society 142(4): 1447-1455.
- Lobb, Andrew & Zentner, Raphael (2013). The Quantum sl(N) Graph Invariant and a Moduli Space. International Mathematics Research Notices
- Lobb, Andrew (2012). A note on Gornik's perturbation of Khovanov-Rozansky homology. Algebraic & Geometric Topology 12(1): 293-305.
- Lobb, Andrew (2011). Computable bounds for Rasmussen's concordance invariant. Compositio Mathematica 147(2): 661-668.
- Lobb, Andrew & Zentner, Raphael (2010). On Casson-type instanton moduli spaces over negative definite 4-manifolds. Quarterly Journal of Mathematics 62(2): 433-450.
- Lobb, Andrew. (2009). A slice genus lower bound from sl(n) Khovanov-Rozansky homology. Advances in Mathematics 222(4): 1220-1276.