We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Herbert Gangl, PhD University of Bonn

Personal web page

Professor, Number Theory in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 43092
Room number: CM220

Contact Herbert Gangl (email at

Research Groups

Department of Mathematical Sciences

  • Pure Mathematics
  • Pure Mathematics: Algebra & Number Theory

Research Interests

  • Polylogarithms, algebraic K-theory, multiple zeta values

Selected Publications

  • 1: Gangl, Herbert, Dutour Sikiriˇc, M, Gunnells, P, Hanke, J, Schuermann, A & Yasaki, D (2019). On the topological computation of K_4 of the Gaussian and Eisenstein integers. Journal of homotopy and related structures 14: 281-291.
  • 2: Dutour Sikirić, Mathieu, Gangl, Herbert, Gunnells, Paul E., Hanke, Jonathan, Schürmann, Achill & Yasaki, Dan (2016). On the cohomology of linear groups over imaginary quadratic fields. Journal of Pure and Applied Algebra 220(7): 2564-2589.
  • 3: Carr, S., Gangl, H. & Schneps, L. (2015). On the Broadhurst-Kreimer generating series for multiple zeta values. In Feynman amplitudes, periods, and motives: international research conference on periods and motives: a modern perspective on renormalization: July 2-6, 2012, Institute de Ciencias Matemáticas, Madrid, Spain. Álvarez-Cónsul, L., Burgos Gil, J. I. & Ebrahimi-Fard, K. Providence, Rhode Island: American Mathematical Society. 648: 57-77.
  • 4: Elbaz-Vincent, Ph & Gangl, H (2015). Chapter 31: Finite polylogarithms, their multiple analogues and the Shannon entropy. In Geometric Science of Information. Nielsen, F & Barbaresco, F 9389: 277-285.
  • Gangl, H. (2010). Regulators via iterated integrals (numerical computations). In The geometry of algebraic cycles. Providence, RI: Amer. Math. Soc. 9: 99-117.
  • Gangl, H., Goncharov, A. B. & Levin, A. (2009). Multiple polylogarithms, polygons, trees and algebraic cycles. In Algebraic geometry--Seattle 2005. Part 2. Abramovich, D., Bertram, Aaron, Katzarkov, Ludmil, Pandharipande, Rahul & Thaddeus, Michael Providence, RI: American Mathematical Society. 80: 547-593.
  • Gangl, H, Goncharov, A.B. & Levin, A. (2007). Multiple logarithms, trees and algebraic cycles. In Frontiers in Number Theory, Physics and Geometry II. P. Cartier, B. Julia, P. Moussa & P. Vanhove Berlin Heidelberg: Springer. II: 759-774.
  • Gangl, H. (2013). Functional equations and ladders for polylogarithms. Communications in Number Theory and Physics 7(3): 397-410.
  • Elbaz-Vincent, Ph., Gangl, H. & Soule, C. (2013). Perfect forms, K-theory and the cohomology of modular groups. Advances in Mathematics 245: 587-624.
  • Duhr, Claude, Gangl, Herbert & Rhodes, John (2012). From polygons and symbols to polylogarithmic expressions. Journal of High Energy Physics 2012(10): 075.
  • Burns, David, de Jeu, Rob & Gangl, Herbert (2012). On special elements in higher algebraic K-theory and the Lichtenbaum-Gross Conjecture. Advances in Mathematics 230(3): 1502-1529.
  • Gangl, H. (2007). Goncharov's trilogarithm relation on pictures. Journal of number theory 124(1): 17-25.
  • Belabas, K. & Gangl, H. (2004). Generators and Relations for K_2 O_F. K-Theory 31(3): 195-231.
  • Gangl, H. (2003). Functional equations for higher logarithms. Selecta Mathematica 9(3): 361-377.
  • Elbaz-Vincent, Ph. & Gangl, H. (2002). On poly(ana)logs I. Compositio Mathematica 130(2): 161-214.
  • Elbaz-Vincent, Ph., Gangl, H. & Soulé, C. (2002). Quelques calculs de la cohomologie de GL_N(Z) et de la K-theorie de Z. Comptes Rendus Mathematique 335(4): 321-324.
  • Gangl, H., Kaneko, M. & Zagier, D. (2006). Double zeta values and modular forms. Automorphic forms and zeta functions, Tokyo, Japan, World Scientific.

Show all publications