Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Prof. J.A. Gareth Williams

Personal web page

Professor in the Department of Chemistry
Telephone: +44 (0) 191 33 42124

(email at j.a.g.williams@durham.ac.uk)

Research Interests

Research interests are centred around the synthesis and properties of light-emitting molecules. Applications include: (i) organic light-emitting diodes (OLEDs) for new flat-screen display technology, (ii) luminescent probes for bioimaging and as sensors for bioactive molecules in solution, and (iii) photosensitisers of energy- and electron-transfer for solar energy conversion.

We are also interested in the bacteristatic effects of ligands related to EDTA - how such chelants can interfere with the ability of bacteria to acquire the metal ions they need to survive. Such research has huge implications for the shelf-life of many consumer products, ranging from mayonnaise to face cream! 

Our synthetic work includes both organic synthesis and the coordination chemistry of transition metal and lanthanide ions. We also study the luminescence and photophysical properties of conjugated organic molecules and new metal complexes. The work is multi-disciplinary in nature, and embraces all three of the main branches of chemistry. We have close links with Universities in France, Italy and North America, and industrial laboratories in the UK and USA.

Cyclometallated platinum(II) and iridium(III) complexes

Organic light emitting devices (OLEDs) are set to be at the forefront of future display screen technology. Luminescent, charge-neutral complexes of third-row transition metal ions will be important as "triplet-harvesting agents" in OLEDs. The high spin-orbit coupling constant of these heavy metal ions promotes emission from the triplet excited states that are normally non-emissive and wasted in such devices, allowing huge gains in efficiency and lower power consumption. Charge-neutral complexes can be obtained by cyclometallation: formation of a metal-carbon bond within a chelate ring. We are investigating N^C^N-coordinating ligands for this purpose, bound to Pt(II) and Ir(III).1, 2

For example, the platinum complexes of these ligands are amongst the most emissive ever reported, with quantum yields in excess of 60%, and the colour of emission can be tuned from green to red according to the substituents on the ligand.2 These compounds function well in OLEDs giving very efficient performance.3 At high concentrations, intense excimer emission is also observed and, by choosing an appropriate concentration, the combination of blue-green emission from isolated molecules with red excimer emission leads to the production of white light, a feature that is attractive for lighting applications. The figure shows four OLEDs prepared using different concentrations of platinum and the different colours that result, superimposed on the CIE coordinates. The asterisk indicates the ideal position for ambient room lighting – we’re not far off! 4

We’re also exploring the utility of these compounds as oxygen sensors. By immobilising them in an ethyl cellulose film also containing platinum octaethylporphyrin, a wide-range O2 sensor is obtained that responds as a molecular traffic light.2

Molecular LEGO: Cross-couplings in the synthesis of photoactive multimetallic assemblies

We have pioneered the use of palladium-catalysed cross-coupling reactions for building on the back of metal-bound ligands. For example, ruthenium(II) and iridium(III) complexes with bipyridyl and terpyridyl ligands, incorporating a bromo substituent, can react with aryl boronic acids, offering a reliable route to larger systems. We have also shown that boronic acid functionality can be introduced into such metal complexes. But most significant is the fact that these two mutually complementary types of complex can be cross-coupled with one another, leading to a controlled synthesis of multimetallic assemblies. An example is shown in the figure. This "building block" approach offers major advantages of control and diversity over conventional methods which rely on pre-formed bridging ligands. Photosensitised energy and electron transfer processes between the metal centres are being investigated using time-resolved spectroscopy. See our recently published book chapter on Multinuclear Iridium Complexes for more details of this area of our research.5

Luminescent sensors for bioactive ions and molecules in solution

Although a large number of fluorescent sensors for a variety of species are commercially available, most rely on changes in the wavelength or intensity of the short-lived (nanosecond) emission. We are seeking to develop new light-emitting components for sensors, in which the emission is long-lived, in the microsecond-to-millisecond range. This allows time-resolved detection methods of analysis to be employed, which gets round the problem of background interference from other fluorescent material, and also offers the potential for lifetime-based sensing. See our recent book chapter for more about the background to time-resolved imaging.6

We are investigating a number of systems for this purpose, including cyclometallated platinum(II) and iridium(III) complexes, together with their interactions with a variety of biologically active ions and molecules. The group is studying the use of such brightly emissive metal complexes as novel imaging agents in live cells.7,8 The figure shows a culture of CHO cells under a fluorescent microscope, which have been incubated with a new iridium complex that accumulates and emits brightly in the nucleoli. Some of the iridium complexes under study also show potential for photodynamic therapy - for the light-activated destruction of cancer cells.9 

References

  1. L. F. Gildea and J. A. G. Williams, Iridium and platinum complexes for OLEDs, in "Organic light-emitting diodes: Materials, devices and applications", ed. A. Buckley, Woodhead, 2013.
  2. J. A. G. Williams, Chem. Soc. Rev., 2009, 38, 1783-1801.
  3. J. Kalinowski, V. Fattori, M. Cocchi and J. A. G. Williams, Coord. Chem. Rev., 2011, 255, 2401-2425.
  4. L. Murphy, P. Brulatti, V. Fattori, M. Cocchi and J. A. G. Williams, Chem. Commun., 2012, 48, 5817-5819.
  5. J. A. G. Williams, Multinuclear Iridium Complexes in "Iridium(III) In Optoelectronics and Photonics Applications" ed. E. Z. Colman, Wiley, 2017. 
  6. E. Baggaley, J. A. Weinstein and J. A. G. Williams, "Time-resolved emission imaging microscopy using phosphorescent metal complexes: taking FLIM and PLIM to new lengths", Struct. Bond., 2015, 165, 205-256.
  7. E. Baggaley, S. W. Botchway, J. W. Haycock, H. Morris, I. V. Sazanovich, J. A. G. Williams and J. A. Weinstein, Chem. Sci., 2014, 5, 879-886.
  8. E. Baggaley, I. V. Sazanovich, J. A. G. Williams, J. W. Haycock, S. W. Botchway and J. A. Weinstein, RSC Advances, 2014, 4, 35003-35008.
  9. L. K. McKenzie, I. V. Sazanovich, E. Baggaley, M. Bonneau, V. Guerchais, J. A. G. Williams, J. A. Weinstein and H. E. Bryant, Chem. Eur. J., 2017, 23, 234-238.

Research Groups

Department of Biosciences

  • Durham Centre for Bioimaging Technology

Department of Chemistry

  • Functional Molecules and Materials
  • Physical Organic and Assembly

Research Interests

  • Synthetic Chemistry
  • Metal Complexes
  • Luminescence and Bioimaging

Publications

Chapter in book

  • Baggaley, E, Weinstein, JA & Williams, JAG (2014). Time-resolved emission imaging microscopy using phosphorescent metal complexes: taking FLIM and PLIM to new lengths. In Structure and Bonding. Lo, KKW Berlin, Heidelberg: Springer.

Journal Article

  • Zhang, Zhi-Hui, Tizzard, Graham J., Williams, J. A. Gareth & Goldup, Stephen (2020). Rotaxane Pt(II)-Complexes: Mechanical Bonding for Chemically Robust Luminophores and Stimuli Responsive Behaviour. Chemical Science
  • Puttock, E. V., Fradgley, J. D., Yufit, D. S. & Williams, J. A. G. (2019). A family of readily synthesised phosphorescent platinum(II) complexes based on tridentate N^N^O-coordinating Schiff-base ligands. Dalton Transactions 48(40): 15012-15028.
  • Dragonetti, Claudia, Colombo, Alessia, Fontani, Mattia, Roberto, Dominique, Williams, Gareth, Scotto di Perrotolo, Rossella, Casagrande, Francesca, Barozzi, Sara & Polo, Simona (2019). A highly luminescent tetrahydrocurcumin Ir(III) complex with remarkable photoactivated anticancer activity. Chemistry – A European Journal 25(33): 7948-7952.
  • Crassous, Jeanne, Macé, Aurélie, Hellou, Nora, Hammoud, Joanna, Martin, Clothilde, Nasser, Ghassan, Gauthier, Etienne, Favereau, Ludovic, Roisnel, Thierry, Caytan, Elsa, Vanthuyne, Nicolas, Williams, Gareth, Berrée, Fabienne & Carboni, Bertrand (2019). An enantiopure cyclometallated iridium complex displaying long-lived phosphorescence both in solution and in the solid state. Helvetica Chimica Acta 102(4): e1900044.
  • Shafikov, Marsel Z., Daniels, Ruth, Pander, Piotr, Dias, Fernando B., Williams, J. A. Gareth & Kozhevnikov, Valery N. (2019). Dinuclear Design of a Pt(II) Complex Affording Highly Efficient Red Emission: Photophysical Properties and Application in Solution-Processible OLEDs. ACS Applied Materials & Interfaces 11(8): 8182–8193.
  • Mondal, Rajarshi, Lozada, Issiah B., Davis, Rebecca L., Williams, J. A. Gareth & Herbert, David E. (2019). Exploiting synergy between ligand design and counterion interactions to boost room temperature phosphorescence from Cu(i) compounds. Journal of Materials Chemistry C 7(13): 3772-3778.
  • Walden, Melissa T., Pander, Piotr, Yufit, Dmitry S., Dias, Fernando B. & Williams, J. A. Gareth (2019). Homoleptic platinum(ii) complexes with pyridyltriazole ligands: excimer-forming phosphorescent emitters for solution-processed OLEDs. Journal of Materials Chemistry C 7(22): 6592-6606.
  • Mandapati, Pavan, Braun, Jason D., Killeen, Charles, Davis, Rebecca L., Williams, J. A. Gareth & Herbert, David E. (2019). Luminescent Platinum(II) Complexes of N^N–^N Amido Ligands with Benzannulated N-Heterocyclic Donor Arms: Quinolines Offer Unexpectedly Deeper Red Phosphorescence than Phenanthridines. Inorganic Chemistry 58(21): 14808-14817.
  • Etchells, Isaac M., Pfrunder, Michael C., Williams, J. A. Gareth & Moore, Evan G. (2019). Quantification of energy transfer in bimetallic Pt(ii)–Ln(iii) complexes featuring an N^C^N-cyclometallating ligand. Dalton Transactions 48(6): 2142-2149.
  • Parker, D., Walter, E. R. H. & Williams, J. A. G. (2018). APTRA-based luminescent lanthanide complexes displaying enhanced selectivity for Mg2+. Chemistry - A European Journal 24(30): 7724-7733.
  • Walter, Edward R. H., Fox, Mark A., Parker, David & Williams, J. A. Gareth (2018). Enhanced selectivity for Mg2+ with a phosphinate-based chelate: APDAP versus APTRA. Dalton Transactions 47(6): 1755-1763.
  • Mulla, R.S., Beecroft, M.S., Pal, R., Aguilar, J.A., Pitarch-Jarque, J., García‐España, E., Lurie-Luke, E., Sharples, G.J. & Williams, J.A.G. (2018). On the antibacterial activity of azacarboxylate ligands: lowered metal ion affinities for bis-amide derivatives of EDTA do not mean reduced activity. Chemistry - A European Journal 24(28): 7137-7148.
  • Mondal, Rajarshi, Lozada, Issiah B., Davis, Rebecca L., Williams, J. A. Gareth & Herbert, David E. (2018). Site-Selective Benzannulation of N-Heterocycles in Bidentate Ligands Leads to Blue-Shifted Emission from [(P^N)Cu]2(μ-X)2 Dimers. Inorganic Chemistry 57(9): 4966-4978.
  • Parker, Rachel R., Sarju, Julia P., Whitwood, Adrian C., Williams, J. A. Gareth, Lynam, Jason M. & Bruce, Duncan W. (2018). Synthesis, Mesomorphism, and Photophysics of 2,5-Bis(dodecyloxyphenyl)pyridine Complexes of Platinum(IV). Chemistry - A European Journal 24(71): 19010-19023.
  • Puttock, Emma V., Walden, Melissa T. & Williams, J.A. Gareth (2018). The luminescence properties of multinuclear platinum complexes. Coordination Chemistry Reviews 367: 127-162.
  • Parker, D., Williams, J. A. G. & Walter, E. R. H. (2018). Tuning Mg2+ selectivity: comparative analysis of the photophysical properties of four fluorescent probes with an alkynyl-naphthalene fluorophore. Chemistry - A European Journal 24(24): 6432-6441.
  • McKenzie, L. K., Sazanovich, I. V., Baggaley, E., Bonneau, M., Guerchais, V., Williams, J. A. G., Weinstein, J. A. & Bryant, H. E. (2017). Metal Complexes for Two-Photon Photodynamic Therapy: A Cyclometallated Iridium Complex Induces Two-Photon Photosensitization of Cancer Cells under Near-IR Light. Chemistry - A European Journal 23(2): 234-238.
  • Mulla, R. S., Pitarch-Jarque, J., Garcia-Espana, E., Desa, T., Lurie-Luke, E. & Williams, J. A. G. (2017). Monoamide Derivatives of EDTA Incorporating Pendent Carboxylates or Pyridyls: Synthesis, Metal Binding, and Crystal Structure of a Dinuclear Ca2+ Complex Featuring Bridging Na+ Ions. ChemistrySelect 2(18): 5045-5050.
  • Maciejczyk, Michal R., Williams, J. A. Gareth, Robertson, Neil & Pietraszkiewicz, Marek (2017). Monothiatruxene: a new versatile core for functional materials. RSC Advances 7(78): 49532-49535.
  • Knuckey, Kathryn J. & Williams, J. A. Gareth (2017). Photon Funnels for One-Way Energy Transfer: Multimetallic Assemblies Incorporating Cyclometallated Iridium or Rhodium Units Accessed by Sequential Cross-Coupling and Bromination. European Journal of Inorganic Chemistry 2017(44): 5205-5214.
  • Turnbull, G., Williams, J. A. G. & Kozhevnikov, V. N. (2017). Rigidly linking cyclometallated Ir(III) and Pt(II) centres: an efficient approach to strongly absorbing and highly phosphorescent red emitters. Chemical Communications 53(18): 2729-2732.
  • Walter, Edward R. H., Williams, J. A. Gareth & Parker, David (2017). Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence. Chemical Communications 53(100): 13344-13347.
  • Mulla, Raminder S., Walden, Melissa T., Yufit, Dmitry S., Desa, Tanya, Lurie-Luke, Elena & Williams, J.A. Gareth (2017). Strategies for the synthesis of HBGl3, a glutamic acid derived ligand bearing phenolic and azacarboxylate donor groups at the nitrogen atom. Tetrahedron 73(45): 6410-6420.
  • Shen, C., Srebro-Hooper, M., Jean, M., Vanthuyne, N., Toupet, L., Williams, J. A. G., Torres, A. R., Riives, A. J., Muller, G., Autschbach, J. & Crassous, J. (2017). Synthesis and Chiroptical Properties of Hexa-, Octa-, and Decaazaborahelicenes: Influence of Helicene Size and of the Number of Boron Atoms. Chemistry - A European Journal 23(2): 407-418.
  • Nisic, F., Cariati, E., Colombo, A., Dragonetti, C., Fantacci, S., Garoni, E., Lucenti, E., Righetto, S., Roberto, D. & Williams, J. A. G. (2017). Tuning the dipolar second-order nonlinear optical properties of 5-π-delocalized-donor-1,3-di(2-pyridyl) benzenes, related cyclometallated platinum(II) complexes and methylated salts. Dalton Transactions 46(4): 1179-1185.
  • El Sayed Moussa, Mehdi, Chen, Hui, Wang, Zuoyong, Srebro-Hooper, Monika, Vanthuyne, Nicolas, Chevance, Soizic, Roussel, Christian, Williams, J. A. Gareth, Autschbach, Jochen, Réau, Régis, Duan, Zheng, Lescop, Christophe & Crassous, Jeanne (2016). Bimetallic Gold(I) Complexes with Ethynyl-Helicene and Bis-Phosphole Ligands: Understanding the Role of Aurophilic Interactions in their Chiroptical Properties. Chemistry - A European Journal 22(17): 6075-6086.
  • Isla, Helena, Srebro-Hooper, Monika, Jean, Marion, Vanthuyne, Nicolas, Roisnel, Thierry, Lunkley, Jamie L., Muller, Gilles, Williams, J. A. Gareth, Autschbach, Jochen & Crassous, Jeanne (2016). Conformational changes and chiroptical switching of enantiopure bis-helicenic terpyridine upon Zn2+binding. Chemical Communications 52(35): 5932-5935.
  • Moussa, Jamal, Haddouche, Kamel, Chamoreau, Lise-Marie, Amouri, Hani & Williams, J. A. G. (2016). New N^C^N-coordinated Pd(ii) and Pt(ii) complexes of a tridentate N-heterocyclic carbene ligand featuring a 6-membered central ring: synthesis, structures and luminescence. Dalton Transactions 45(32): 12644.
  • Rodrigue-Witchel, Alexandre, Rochester, David L., Zhao, Shu-Bin, Lavelle, Kevin B., Williams, J.A. Gareth, Wang, Suning, Connick, William B. & Reber, Christian (2016). Pressure-induced variations of MLCT and ligand-centered luminescence spectra in square-planar platinum(II) complexes. Polyhedron 108: 151-155.
  • Moussa, Jamal, Freeman, Gemma R., Williams, J. A. Gareth, Chamoreau, Lise-Marie, Herson, Patrick & Amouri, Hani (2016). Synthesis and Luminescence Properties of Cycloplatinated Complexes with a Chelating N∧C Pyridine-Derived N-Heterocyclic Carbene - Influence of 2,4,6-Triphenyl­phosphinine versus Triphenylphosphine. European Journal of Inorganic Chemistry 2016(5): 761.
  • Daniels, R. E., Culham, S., Hunter, M., Durrant, M. C., Probert, M. R., Clegg, W., Williams, J. A. G. & Kozhevnikov, V. N. (2016). When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes. Dalton Transactions 45(16): 6949-6962.
  • Muñoz-Rodríguez, R., Buñuel, E., Fuentes, N., Williams, J.A.G. & Cárdenas, D.J. (2015). A heterotrimetallic Ir(III), Au(III) and Pt(II) complex incorporating cyclometallating bi- and tridentate ligands simultaneous emission from different luminescent metal centres leads to broad-band light emission. Dalton Transactions 44(18): 8394-8405.
  • Saleh, S., Moore II, B., Srebro, M., Vanthuyne, N., Toupet, L., Williams, J. A. G., Roussel, C., Deol, K. K., Muller, G., Autschbach, J. & Crassous, C. (2015). Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. Chemistry - A European Journal 21(4): 1673-1681.
  • Moussa, J., Cheminel, T., Freeman, G. R., Chamoreau, L. M., Williams, J. A. G. & Amouri, H. (2014). An unprecedented cyclometallated platinum(II)complex incorporating a phosphinine co-ligand: synthesis and photoluminescence behaviour. Dalton Transactions 43(22): 8162-8165.
  • Baggaley, Elizabeth, Botchway, Stanley W., Haycock, John W., Morris, Hayley, Sazanovich, Igor V., Williams, J. A. Gareth & Weinstein, Julia A. (2014). Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chemical Science 5(3): 879-886.
  • Tarran, W. A., Freeman, G. R., Murphy, L., Benham, A. M., Kataky, R. & Williams, J. A. G. (2014). Platinum(II) Complexes of N^C^N‑Coordinating 1,3-Bis(2-pyridyl)benzene Ligands: Thiolate Coligands Lead to Strong Red Luminescence from Charge-Transfer States. Inorganic Chemistry 53(11): 5738-5749.
  • Shen, C., Anger, E., Srebro, M., Vanthuyne, N., Deol, K. K., Jefferson, T. D., Muller, G., Williams, J. A. G., Toupet, L., Roussel, C., Autschbach, J., Réau, R. & Crassous, J. (2014). Straightforward access to mono- and biscycloplatinated helicenes displaying circularly polarized phosphorescence by using crystallization resolution methods. Chemical Science 5(5): 1915-1927.
  • Santoro, A, Prokhorov, AM, Kozhevnikov, VN, Whitwood, AC, Donnio, B, Williams, JAG & Bruce, DW (2011). Emissive Metallomesogens Based on 2-Phenylpyridine Complexes of Iridium(III). Journal of the American Chemical Society 133(14): 5248-5251.
  • Anger, E, Rudolph, M, Norel, L, Zrig, S, Shen, C, Vanthuyne, N, Toupet, L, Williams, JAG, Roussel, C, Autschbach, J, Crassous, J & Réau, R (2011). Multifunctional and Reactive Enantiopure Organometallic Helicenes: Tuning Chiroptical Properties by Structural Variations of Mono- and Bis(platinahelicene)s. Chemistry - A European Journal 17(50): 14178-14198.
  • Kozhevnikov, DN, Kozhevnikov, VN, Shafikov, MZ, Prokhorov, AM, Bruce, DW & Williams, JAG (2011). Phosphorescence vs Fluorescence in Cyclometalated Platinum(II) and Iridium(III) Complexes of (Oligo) thienylpyridines. Inorganic Chemistry 50(8): 3804-3815.
  • Arm, K.J. & Williams, J.A.G. (2006). A cross-coupling strategy for the synthesis of dimetallic assemblies containing mixed bipyridine–terpyridine bridging ligands: luminescence and energy transfer properties. Dalton Transactions (18): 2172-2174.
  • Evans, R.C., Douglas, P., Williams, J.A.G. & Rochester, D.L. (2006). A novel luminescence-based colorimetric oxygen sensor with a "traffic light" response. Journal of Fluorescence 16(2): 201-206.
  • Jaanus Kruusma, Adam M. Benham, J.A. Gareth Williams & R. Kataky (2006). An introduction to thiol redox proteins in the endoplasmic reticulum and a review of current electrochemical methods of detection of thiols. Analyst 131(4): 459-473.
  • Kalinowski, J., Cocchi, M., Virgili, D., Fattori, V. & Williams, J.A.G. (2006). Evidence for electric field dependent dissociation of exciplexes in electron donor-acceptor organic solid films. Chemical Physics Letters 432(1-3): 110-115.
  • Virgili, D., Cocchi, M., Fattori, Sabatini, C., Kalinowski, J. & Williams, J.A.G. (2006). Highly efficient exciplex phosphorescence from organic light-emitting diodes. Chemical Physics Letters 433(1-3): 145-149.
  • Dias-Gunasekara, S., van Lith, M., Williams, J.A.G., Kataky, R. & Benham, A.M. (2006). Mutations in the FAD binding domain cause stress-induced misoxidation of the endoplasmic reticulum oxidoreductase Ero1b. Journal of Biological Chemistry 281(35): 25018-25025.
  • Arm, K.J., Leslie, W. & Williams, J.A.G. (2006). Synthesis and pH-sensitive luminescence of bis-terpyridyl iridium(III) complexes incorporating pendent pyridyl groups. Inorganica Chimica Acta 359(4): 1222-1232.
  • Sénéchal-David, K., Hemeryck, A., Tancrez, N., Toupet, L., Williams, J.A.G., Ledoux, I., Zyss, J., Boucekkine, A., Guégan, J.P., Le Bozec. H. & Maury, O. (2006). Synthesis, structural studies, theoretical calculations, and linear and nonlinear optical properties of terpyridyl lanthanide complexes: New evidence for the contribution of f electrons to the NLO activity. Journal of the American Chemical Society 128(37): 12243-12255.
  • Yin, B.L., Niemeyer, F., Williams, J.A.G., Jiang, J., Boucekkine, A., Toupet, L., Le Bozec, H. & Guerchais, V. (2006). Synthesis, structure, and photophysical properties of luminescent platinum(II) complexes containing cyclometalated 4-styryl-functionalized 2-phenylpyridine ligands. Inorganic Chemistry 45(21): 8584-8596.

Supervises