Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Fernando Galaz-Garcia, PhD University of Maryland College Park, Habilitation Karlsruhe Institute of Technology (KIT)

Assistant Professor, Analysis, Dynamics & Geometry in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 43110
Room number: CM106

(email at fernando.galaz-garcia@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Pure Mathematics
  • Pure Mathematics: Geometry

Research Interests

  • Differential Geometry
  • Geometric Topology
  • Metric Geometry
  • Transformation Groups

Publications

Edited book

  • Galaz-García, Fernando (Editor), Pardo Millán, Juan Carlos (Editor) & Solórzano, Pedro (Editor) (2018). Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics. Contemporary Mathematics. American Mathematical Society.
  • Bárcenas, Noé (Editor), Galaz-García, Fernando (Editor) & Moreno Rocha, Mónica (Editor) (2016). Mexican Mathematicians Abroad. Contemporary Mathematics. American Mathematical Society.

Chapter in book

  • Galaz-García, Fernando, Guijarro, Luis & Núñez-Zimbrón, Jesús (2020). Collapsed 3-Dimensional Alexandrov Spaces: A Brief Survey. In Differential Geometry in the Large. Dearricott, Owen, Tuschmann, Wilderich Nikolayevsky,Yuri, Leistner, Thomas & Crowley, Diarmuid Cambridge: Cambridge University Press. 463: 291-310.
  • Galaz-Garcia, Fernando (2014). A Note on Maximal Symmetry Rank, Quasipositive Curvature, and Low Dimensional Manifolds. In Geometry of Manifolds with Non-negative Sectional Curvature. Springer. 2110: 45-55.

Journal Article

  • Galaz-García, Fernando & Zarei, Masoumeh (2020). Cohomogeneity one Alexandrov spaces in low dimensions. Annals of Global Analysis and Geometry 58(2): 109-146.
  • Galaz-García, Fernando & Tuschmann, Wilderich (2020). Finiteness and realization theorems for Alexandrov spaces with bounded curvature. Boletín de la Sociedad Matemática Mexicana 26(2): 749-756.
  • Corro, Diego & Galaz-García, Fernando (2020). Positive Ricci curvature on simply-connected manifolds with cohomogeneity-two torus actions. Proceedings of the American Mathematical Society 148(7): 3087-3097.
  • Eltzner, Benjamin, Galaz-García, Fernando , Huckemann, Stephan F. & Tuschmann, Wilderich (2020). Stability of the cut locus and a Central Limit Theorem for Fréchet means of Riemannian manifolds. Proceedings of the American Mathematical Society
  • Galaz-García, Fernando, Guijarro, Luis & Núñez-Zimbrón, Jesús (2020). Sufficiently collapsed irreducible Alexandrov 3-spaces are geometric. Indiana University Mathematics Journal 69(3): 977-1005.
  • Galaz-García, Fernando & Núñez-Zimbrón, Jesús (2020). Three-dimensional Alexandrov spaces with local isometric circle actions. Kyoto Journal of Mathematics 60(3): 801-823.
  • Galaz-García, F., Kerin, M. & Radeschi, M. (2020). Torus actions on rationally elliptic manifolds. Mathematische Zeitschrift
  • Galaz-García, Fernando & Zarei, Masoumeh (2018). Cohomogeneity one topological manifolds revisited. Mathematische Zeitschrift 288(3-4): 829-853.
  • Galaz-García, Fernando, Kell, Martin, Mondino, Andrea & Sosa, Gerardo (2018). On quotients of spaces with Ricci curvature bounded below. Journal of Functional Analysis 275(6): 1368-1446.
  • Deng, Qintao, Galaz-García, Fernando, Guijarro, Luis & Munn, Michael (2018). Three-Dimensional Alexandrov Spaces with Positive or Nonnegative Ricci Curvature. Potential Analysis 48(2): 223-238.
  • Galaz-García, Fernando, Kerin, Martin, Radeschi, Marco & Wiemeler, Michael (2017). Torus Orbifolds, Slice-Maximal Torus Actions, and Rational Ellipticity. International Mathematics Research Notices 2018(18): 5786-5822.
  • Galaz-García, Fernando (2016). A glance at three-dimensional Alexandrov spaces. Frontiers of Mathematics in China 11(5): 1189-1206.
  • Galaz-García, Fernando & Guijarro, Luis (2015). Every point in a Riemannian manifold is critical. Calculus of Variations and Partial Differential Equations 54(2): 2079-2084.
  • Galaz-Garcia, Fernando & Radeschi, Marco (2015). Singular Riemannian foliations and applications to positive and non-negative curvature. Journal of Topology 8(3): 603-620.
  • Galaz-Garcia, Fernando & Kerin, Martin (2014). Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension. Mathematische Zeitschrift 276(1-2): 133-152.
  • Galaz-Garcia, Fernando & Spindeler, Wolfgang (2014). Erratum to: Nonnegatively curved fixed point homogeneous 5-manifolds. Annals of Global Analysis and Geometry 45(2): 151-153.
  • Galaz-Garcia, Fernando & Searle, Catherine (2014). Nonnegatively curved 5–manifolds with almost maximal symmetry rank. Geometry & Topology 18(3): 1397-1435.
  • Galaz-Garcia, Fernando & Guijarro, Luis (2014). On Three-Dimensional Alexandrov Spaces. International Mathematics Research Notices 2015(14): 5560-5576.
  • Galaz-Garcia, Fernando & Guijarro, Luis (2013). Isometry groups of Alexandrov spaces. Bulletin of the London Mathematical Society 45(3): 567-579.
  • Galaz-Garcia, Fernando & Spindeler, Wolfgang (2012). Nonnegatively curved fixed point homogeneous 5-manifolds. Annals of Global Analysis and Geometry 41(2): 253-263.
  • Galaz-Garcia, Fernando (2012). Nonnegatively curved fixed point homogeneous manifolds in low dimensions. Geometriae Dedicata 157(1): 367-396.
  • Galaz-Garcia, Fernando & Searle, Catherine (2011). Cohomogeneity one Alexandrov spaces. Transformation Groups 16(1): 91-107.
  • Galaz-Garcia, Fernando & Searle, Catherine (2010). Low-dimensional manifolds with non-negative curvature and maximal symmetry rank. Proceedings of the American Mathematical Society 139(7): 2559-2564.
  • Galaz-Garcia, Fernando (2009). Bounds on Characteristic Numbers by Curvature and Radius. Rocky Mountain Journal of Mathematics 39(4): 1225-1231.
  • Galaz-Garcia, Fernando (2008). Examples of 4-manifolds with almost nonpositive curvature. Differential Geometry and its Applications 26(6): 697-703.