Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Email and Telephone Directory

Staff Profile

Anne Taormina, PhD University of Mons-Hainaut

Personal web page

Professor, Theoretical Particle Physics in the Department of Mathematical Sciences
Telephone: +44 (0) 191 33 43059
Room number: CM326
Room number: CM202

(email at anne.taormina@durham.ac.uk)

Research Groups

Department of Mathematical Sciences

  • Mathematical & Theoretical Physics
  • Mathematical & Theoretical Physics: String Theory, Gravity and Cosmology

Research Interests

  • String and Conformal Field Theory
  • Group Theory and Applications to Mathematical Biology

Selected Publications

Chapter in book

  • Jonoska, N., Taormina, A. & Twarock, R. (2009). DNA Cages with Icosahedral Symmetry in Bionanotechnology. In Algorithmic Bioprocesses. Condon, A., Harel, D. & Kok, J.N. Berlin: Springer. Natural Computing Series, 4: 141-158.

Journal Article

  • Taormina, Anne & Wendland, Katrin (2020). SU(2) channels the cancellation of K3 BPS states. Journal of High Energy Physics 2020(04): 184.
  • Taormina, Anne & Wendland, Katrin (2020). The Conway Moonshine Module is a Reflected K3 Theory. Advances in Theoretical and Mathematical Physics 24.
  • Taormina, Anne & Wendland, Katrin (2018). Not doomed to fail. Journal of High Energy Physics 2018(09): 062.
  • Banwell, Eleanor F., Piette, Bernard M. A. G., Taormina, Anne & Heddle, Jonathan G. (2018). Reciprocal Nucleopeptides as the Ancestral Darwinian Self-Replicator. Molecular Biology and Evolution 35(2): 404-416.
  • Taormina, A. & Wendland, K. (2015). A twist in the M24 moonshine story. Confluentes Mathematici 7(1): 83-113.
  • Gaberdiel, M. Taormina, A., Volpato, R. & Wendland, K. (2014). A K3 sigma model with Z_2^8:M_20 symmetry. Journal of High Energy Physics 2014(2): 22.
  • Taormina, A. & Wendland, K. (2013). The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24. Journal of High Energy Physics 2013(8): 125.
  • Eguchi, T., Sugawara, Y. & Taormina, A. (2011). Modular forms and elliptic genera for ALE spaces. Advanced Studies in Pure Mathematics 61: 125-159.
  • Grayson, N.E., Taormina, A. & Twarock, R. (2009). DNA duplex cage structures with icosahedral symmetry. Theoretical Computer Science 410(15): 1440-1447.
  • Peeters, K. & Taormina, A. (2009). Group theory of icosahedral virus capsid vibrations: a top-down approach. Journal of Theoretical Biology 256(4): 607-624.
  • Taormina, A. (2009). Liouville Theory and Elliptic Genera. Progress of Theoretical Physics Supplement 177(Supplement 1): 203-217.
  • Elsawy, K.M., Taormina, A., Twarock, R. & Vaughan, L. (2008). Dynamical implications of Viral Tiling Theory. Journal of Theoretical Biology 252(2): 357-369.
  • Peeters, K. & Taormina, A. (2008). Dynamics of Icosahedral Viruses: What Does Viral Tiling Theory Teach Us? Computational and Mathematical Methods in Medicine 9(3-4): 211-220.
  • Englert, F., Peeters, K. & Taormina, A. (2008). Twenty-four near-instabilities of Caspar-Klug viruses. Physical Review E 78(3): 031908
  • Eguchi, T., Sugawara, Y. & Taormina, A. (2007). Liouville Field, Modular Forms and Elliptic Genera. Journal of High Energy Physics 2007(03): 119.
  • Keef, T., Taormina, A. & Twarock, R. (2006). Classification of capped tubular viral particles in the family of Papovaviridae. Journal of Physics: Condensed Matter 18(14): 375-387.
  • Keef, T., Taormina, A. & Twarock, R. (2005). Assembly models for Papovaviridae based on tiling theory. Physical Biology 2(3): 175-188.
  • Semikhatov, Alexei., Taormina, Anne. & Tipunin, Ilya. (2005). Higher-level Appell functions, modular transformations, and characters. Communications in Mathematical Physics 255(2): 469-512.
  • Englert, F., Houart, L., Taormina, A. & West, P. (2003). The symmetry of M-theories. Journal of High Energy Physics 2003(09): 020.
  • Bowcock P., Feigin B.L., Semikhatov A.M. & Taormina A. (2000). Affine sl(2/1) and affine D(2/1;alpha) as vertex operator extensions of dual affine sl(2) algebras. Communications in Mathematical Physics 214: 495-545.
  • Corrigan, Edward & Taormina, A. (2000). Reflection factors and a two-parameter family of boundary bound states in the sinh-Gordon model. Journal of Physics A: Mathematical and Theoretical A33: 8739-8754.
  • Taormina, A. & Wilson, S.M.J. (1998). Virasoro character identities and Artin L-functions. Communications in Mathematical Physics 196(1): 77-103.
  • Eguchi,T., Ooguri,H., Taormina,A. & Yang,S-K. (1989). Superconformal algebras and string compactification on manifolds with SU(n) holonomy. Nuclear Physics B 315: 193-221.

Conference Paper

  • Taormina, A. & Wendland, K. (2015), Symmetry-surfing the moduli space of Kummer K3s, in Donagi, Ron, Katz, Sheldon, Klemm, Albrecht & Morrison, David R. eds, Proceedings of Symposia in Pure Mathematics 90: String-Math 2012. Bonn, Germany, American Mathematical Society, Bonn, 129-154.

Show all publications

Supervises