Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Centre for Molecular and Nanoscale Electronics

Molecular and Nanoscale Electronics

Molecular (nanoscale) electronics is attracting great attention due to potential applications in future sensor devices, computing technology and related fields. The work in the Bryce group is highly interdisciplinary involving close collaboration with experimentalists (Universities of Liverpool, Bern, Basel, Madrid) and theoreticians (University of Lancaster). In this context we are developing monodisperse oligomers which are ca. 2-10 nm in length ("molecular wires") comprising conjugated backbones with terminal substituents (e.g. thiol, pyridyl) which assemble onto metal electrodes to provide metal | molecule | metal junctions. These are oligo(aryleneethynylene) derivatives,1 e.g. molecule 6,  tolane derivatives,2 oligoyne derivatives 73  and oligofluorene derivatives4 for probing the electrical properties of single molecules. We have also designed and synthesised molecules to bridge silicon nanogaps.5

Related projects probe charge transport through oligoyne systems end-capped with donor and acceptor units;6 molecule 8 is a prototype. Oligofluorene bridges have been probed as molecular wires in molecules such as 9 (with Dirk Guldi, University of Erlangen-Nurnberg).7 A wide range of techniques are applied to the study of these molecules, including cyclic voltammetry, spectroelectrochemistry, steady-state and time-resolved photolysis, X-ray crystallography and EPR spectroscopy.

Figure1. Single-molecule electronics. Left image:  Tolane molecules with different anchor groups sandwiched between gold electrodes (Durham-Bern-Lancaster collaboration; figure courtesy of the University of Bern). Right image: A fluorene molecular wire with fullerene anchor groups assembled on a gold surface probed with an STM tip (Durham-Madrid collaboration; figure courtesy of IMDEA-Nanosciences, Madrid).

  1. W. Haiss, C. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, R. J. Nichols, Nature Materials 2006, 5, 995; R. Huber, M. T. Gonzalez, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M. R. Bryce, C. Wang, R. Jitchati, C. Schoenenberger, M. Calame, J. Am. Chem. Soc. 2008, 130, 1080; C. Wang, M. R. Bryce, J. Gigon, G. J. Ashwell, I. Grace, C. J. Lambert, J. Org. Chem. 2008, 73, 4810; S. Martin, I. Grace, M. R. Bryce, C. Wang, R. Jitchati, A. S. Batsanov, S. J. Higgins, C. J. Lambert, R. J. Nichols, J. Am. Chem. Soc. 2010, 132, 9157-9164.
  2. W. Hong, D. Z. Manrique, P. M. García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292.
  3. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols, S. J. Higgins, V. M. Garcia-Suarez, C. J. Lambert, J. Am. Chem. Soc. 2009, 131, 15647.
  4. E. Leary, M. T. González, C. van der Pol, M. R. Bryce, S. Fillipone, N. Martín, G. Rubio-Bollinger, N. Agrait, Nano Lett. 2011, 11, 2236-2241.
  5. G. J. Ashwell, L. J. Phillips, B. J. Robinson, B. Urasinska-Wojcik, C. J. Lambert, I. M. Grace, M. R. Bryce, R. Jitchati, M. Tavasli, T. I. Cox, I. C. Sage, R. P. Tuffin, S. Ray, ACS Nano 2010, 4, 7401-7406.
  6. C. Wang, L.-O. Palsson, A. S. Batsanov, M. R. Bryce, J. Am. Chem. Soc. 2006, 128, 3789; L.-O. Pålsson, C. Wang, A. S. Batsanov, S. M. King, A. Beeby, A. P. Monkman, M. R. Bryce, Chem. Eur. J. 2010, 16, 1470-1479.
  7. M. Wielopolski, G. de Miguel Rojas, C. Van der Pol, L. Brinkhaus, G. Katsukis, M. R. Bryce, T. Clark, D. M. Guldi, ACS Nano 2010, 4, 6449-6462.

 

 

Contact: Martin Bryce (m.r.bryce@durham.ac.uk) for more details.