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1 Uncertainty Averse Preferences

In this section, we show how the characterization of information aggregation, for both the

strategic and non-strategic environments, generalizes to the Uncertainty Averse preferences

model of Cerreia-Vioglio et al. (2011), which include the Variational preferences (Maccheroni

et al. (2006a,b)) and Smooth Ambiguity (Klibanoff et al. (2005)) models. Variational prefer-

ences encompass several interesting subcases, such as the MEU preferences that we analyze

in the main paper, the Multiplier preferences of Hansen and Sargent (2001), and the Mean-

Variance preferences of Markowitz (1952) and Tobin (1958).

The most interesting result of this exercise is that the set of strongly separable securities

remains the same as we move from MEU to the much more general framework of Uncertainty

Averse preferences. In fact, they are characterized with the same condition, which depends

only on the information structure, as shown in Proposition 5. This is surprising because,

when we move from EU to MEU, the set of separable securities is a strict subset of the set of

strongly separable securities. We discuss the intuition of this result right after Proposition

5.

To generalize Theorems 1 and 2 of the main paper, we assume that the set of “zero

cost” priors is fixed, so that it does not depend on the previous announcement, and convex

(Assumptions 1 and 2). Although these assumptions hold for MEU, Variational, and Smooth

Ambiguity preferences, they are not true for more general Uncertainty Averse preferences.

We explain in Section 1.5 why we cannot dispense with these assumptions.

1.1 Model

Each trader evaluates act f : Ω → R as

V (f) = min
p∈∆(Ω)

G

(∫
u(f)dp, p

)
,

where u : R → R is a utility index, G : T × ∆(Ω) → (−∞,∞] is quasiconvex and lower

semicontinuous on T ×∆(Ω), T ⊆ R, and inf
p∈∆(Ω)

G (r, p) = r, for all r ∈ T . We also assume

that G(·, p) is extended-value continuous on T for each p ∈ ∆(Ω).1 Traders are risk neutral,

so u(x) = x, and G(·, p) is strictly increasing for all p ∈ ∆(Ω). Let P be the set of all beliefs

p with finite cost, so that G(r, p) ̸= ∞, for all r ∈ T .

We also consider two special cases of Uncertainty Averse preferences. First, Variational

1That is, lim
t→t0

G(t, p) = G(t0, p) ∈ (−∞,∞] for all t0 ∈ T and p ∈ ∆(Ω). For instance, G(t, p) = ∞ for all

t ∈ T is continuous in this sense. See Cerreia-Vioglio et al. (2011) for more details.
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preferences are represented by

V (f) = min
p∈∆(Ω)

(∫
u(f)dp+ c(p)

)
,

where c : ∆(Ω) → [0,∞] is a grounded, convex and lower semicontinuous function. The

equivalent Uncertainty Averse representation is for G(r, p) = r + c(p). We refer to c(p) as

the “cost” of prior p. Note that this cost is independent of r. MEU preferences are a special

case, as c(p) is either zero or infinity.

Second, Smooth Ambiguity preferences are represented by

V (f) =

∫
∆(Ω)

ϕ

(∫
u(f)dp

)
dµ(p),

where ϕ : R → R is a concave and strictly increasing function, and µ is a countably additive

Borel probability measure on ∆(Ω). Cerreia-Vioglio et al. (2011) show that the equivalent

Uncertainty Averse representation is for G(r, p) = r + min
v∈Γ(p)

Ir(v || µ), where Ir(· || µ) is a

statistical distance, so it is quasiconvex and lower semicontinuous with Ir(v || µ) ≥ 0 for

all v and Ir(µ || µ) = 0, for all r. We refer to min
v∈Γ(p)

Ir(v || µ) as the cost of p. The set

Γ(p) contains all second-order beliefs v that are absolutely continuous with respect to µ and

reduce to the first-order belief p, so that p =
∫
qdv(q). Note that, unlike with Variational

preferences, the cost min
v∈Γ(p)

Ir(v || µ) depends on r. However, if µ reduces to the first-order

belief p, then the cost of p is min
v∈Γ(p)

Ir(v || µ) = Ir(µ || µ) = 0, for all r. We further assume

that, for all r ∈ T , Ir(v || µ) > 0 if v ̸= µ, so that there is no other p with zero cost.

For general Uncertainty Averse preferences, let Pr
0 =

{
p ∈ ∆(Ω) : G(r, p) = inf

q∈∆(Ω)
G (r, q) = r

}
be the set of all p that have “zero cost” given r ∈ T . First, we assume that this set is

nonempty and fixed, so it does not depend on r.

Assumption 1. Pr
0 = Pr′

0 ̸= ∅ for all r, r′ ∈ T .

Let P0 be this set of p that have “zero cost” for all r. Behaviorally, probability p has zero

cost if and only if the agent is more ambiguity averse than the agent with EU preferences

and p as her probability.2 Second, we assume that P0 is convex.

Assumption 2. P0 is convex.

Both assumptions are satisfied by Variational preferences, because the cost function c(·) is
convex and grounded, so that inf

p∈∆(Ω)
c(p) = 0, and independent of r. They are also satisfied by

2We thank a referee for pointing out this connection.
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Smooth Ambiguity preferences, for the unique p which is the reduced, first-order probability

of µ, because we have assumed Ir(v || µ) = 0 if and only if v = µ, for all r ∈ T . They are not

satisfied more generally, as G is quasiconvex and we may have G(r, p) = r but G(r′, p) > r′.

However, both properties are satisfied if there is a unique zero cost p, so that G(r, q) = r if

and only if q = p, for all r ∈ T .

Let E be the collection of events where updating occurs, as defined in the main paper.

Preferences are updated given an event E ∈ E by specifying a new function GE. Given event

E, the trader evaluates act f using VE(f) = min
p∈∆(Ω)

GE

(∫
u(f)dp, p

)
, where GE(·, p) = ∞

if p has a support that is not a subset of E. Let c = {GE}E∈E be the collection of all

such functions. All the aforementioned assumptions for G are maintained for each GE. For

Variational preferences, GE specifies a cost function cE(·), whereas for Smooth Ambiguity

preferences, the statistical distance given E is IE,r(· || µE), where µE is the Bayesian update

of µ given E.

In the main paper with MEU preferences, we assume prior-by-prior updating. We gen-

eralize this updating rule in the following way. Suppose we are in some period tk and the

agent knows that event F ∈ E has occurred. Let Π = {E1, . . . , Em} ⊆ E be a partition of

F ⊆ Φ, containing the events on which the trader can update in period tk+1. For Variational

preferences, we require that cF (p) ≥ β
∑
E∈Π

p(E)cE(pE), for all p ∈ ∆(F ). Note that this

property is weaker than the following updating rule, which Maccheroni et al. (2006a) show

is equivalent to Dynamic Consistency,

cF (p) = inf
{q:q(E)=p(E) ∀E∈Π}

[
β
∑
E∈Π

p(E)cE(pE) + cF (q)

]
.

For Smooth Ambiguity preferences, we require that

min
v∈Γ(p)

IF,r(v || µF ) ≥ β
∑
E∈Π

p(E) min
v∈Γ(pE)

IE,rE(v || µE),

for all r, rE ∈ T . The updating rules for Variational and Smooth Ambiguity preferences

generalise to the following rule for Uncertainty Averse preferences. Note that the updating

rule is more complicated because there is no separation between the cost of p and the expected

utility given p. Consider any sequence of acts fm, for each tm ≥ tk.
3 We require, for all

p ∈ ∆(F ), that

3Recall that there are n traders, so Trader i’s payoffs are in periods tk, tk+n, tk+2n, and so on.
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GF

(
Ep

∞∑
m=0

βnm+1u(fk+n+nm), p

)
≥ β

∑
E∈Π

p(E)GE

(
EpE

∞∑
m=0

βnmu(fk+n+nm), pE

)
.

Given GE, let PE and P0E be the set of probabilities with finite and zero costs, respec-

tively. The updating rule implies that if p ∈ P (resp. p ∈ P0) and E ∈ E , then pE ∈ PE

(resp. p ∈ P0E). We say that c = {GE}E∈E and the corresponding P are regular with respect

to E if all p1, p2 ∈ P are mutually absolutely continuous with respect to E .
The following lemma is a generalization of Lemma 1 in the main paper.

Lemma 5. Let s be a continuous strictly proper scoring rule on [y, y], a, b ∈ R, and let

z ∈ [y, y] be an announcement. Then,

• y∗ ≡ argmax
y∈[y,y]

min
p∈∆(Ω)

G
(
Ep

[
s(y,X)− s(z,X)

]
, p
)
is unique,

• y∗ = Ep[X] for some (not necessarily unique) p ∈ argmin
p∈∆

max
y∈[y,y]

G
(
Ep

[
s(y,X)− s(z,X)

]
, p
)
,

• If z = Ep[X] for some p ∈ ∆(Ω) with G (0, p) = 0, then the optimal announcement is

y∗ = z.

Proof. Where convenient, we use the notation s(y)(·) ≡ s(y,X(·)). We first show that

argmax
y∈[y,y]

min
p∈∆(Ω)

G
(
Ep

[
s(y)− s(z)

]
, p
)
does, in fact, exist. From Lemma 48 in Cerreia-Vioglio

et al. (2011), min
p∈∆(Ω)

G
(
Ep

[
s(y)− s(z)

]
, p
)
is continuous as a function of y. Because [y, y] is

compact, a maximum exists and the set argmax
y∈[y,y]

min
p∈∆(Ω)

G
(
Ep

[
s(y)− s(z)

]
, p
)
is not empty.

Consider the function H : [y, y]×∆ −→ R defined by H(y, p) = G(Ep[s(y)− s(z)], p).

Instead of Sion’s Minimax Theorem, that we used in the main paper, we will use the

more general result of Tuy (2011). Given the main topology τ on ∆(Ω), define τ ′ to be the

topology on ∆(Ω) whose members are complements of sequentially closed subsets of ∆(Ω).

Topology τ ′ is finer that τ . Let a∗ > η ≡ max
y∈[y,y]

min
p∈∆(Ω)

H(y, p). We show that the following

properties hold for all a ∈ (η, a∗).

1. For every p ∈ ∆(Ω), the set {y ∈ [y, y] : H(y, p) > a} is connected.

2. For every y ∈ [y, y], the set Ca(y) = {p ∈ ∆(Ω) : H(y, p) ≤ a} is τ ′-closed and

τ ′-connected.

3. For every p ∈ ∆(Ω), the function H(·, p) is upper semicontinuous.
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4. [y, y] is compact.

Note that, for a fixed p, the expected score Ep

[
s(y)− s(z)] is single-peaked as a function

of y, and the maximum is reached at y = Ep[X]. We therefore have that for each b, the set

{y ∈ [y, y] : Ep

[
s(y)− s(z)] > b} is connected. Let a = G(b, p). Because G(·, p) is increasing,

the set {y ∈ [y, y] : H(y, p) > a} is connected. Set Ca(y) is closed because G, and therefore

H, is lower semicontinuous. Because τ ′ is finer than τ , Ca(y) is also τ ′-closed. For every

p ∈ ∆(Ω), H(·, p) is upper semicontinuous because G(·, p) is extended value continuous. Set

Ca(y) is τ
′-connected for every y ∈ [y, y] because it is convex, from the quasiconvexity of G.

From Theorem 1 in Tuy (2011), we have

min
p∈∆(Ω)

max
y∈[y,y]

G
(
Ep

[
s(y)− s(z)

]
, p
)
= max

y∈[y,y]
min

p∈∆(Ω)
G
(
Ep

[
s(y)− s(z)

]
, p
)
.

For a fixed p, because s is a strictly proper scoring rule and G(·, p) is strictly increasing,

the unique maximizer of G
(
Ep

[
s(y)− s(z)

]
, p
)
over [y, y] is y = Ep[X]. Hence, the maxmin

is achieved at p = p∗ and y = Ep∗ [X]. This proves the second point.

For the first point, suppose there exist Ep(X) ̸= Eq(X) that are optimal announcements,

both solving

min
p0∈∆(Ω)

G
(
Ep0

[
s(Ep0(X), X)− s(z,X)

]
, p0
)
.

Then, G
(
Ep

[
s(Ep(X), X)− s(z,X)

]
, p
)
= G

(
Eq

[
s(Eq(X), X)− s(z,X)

]
, q
)
≡ K. Take

the convex combination ap+ (1− a)q. From the quasiconvexity of G, we have

K ≥ G

(
aEp

[
s(Ep(X), X)− s(z,X)

]
+ (1− a)Eq

[
s(Eq(X), X)− s(z,X)

]
, ap+ (1− a)q

)
=

G

(
aEp

[
s(Ep(X), X)

]
+ (1− a)Eq

[
s(Eq(X), X)

]
− Eap+(1−a)qs(z,X), ap+ (1− a)q

)
>

G

(
aEp

[
s(Eap+(1−a)q(X), X)

]
+(1−a)Eq

[
s(Eap+(1−a)q(X), X)

]
−Eap+(1−a)qs(z,X), ap+(1−a)q

)
=

G

(
Eap+(1−a)q

[
s(Eap+(1−a)q(X), X)− s(z,X)

]
, ap+ (1− a)q

)
.

The strict inequality is implied by the fact that s is strictly proper and G(·, p) is strictly

increasing for all p. But then Ep(X) and Eq(X) are not optimal, a contradiction. This

proves the first point.

For the third point, because the maxmin is equal to the minimax and the proper scoring

rule is optimized when announcing Ep[X], we have that the myopic best response is Ep∗ [X],
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where

p∗ ∈ argmin
p∈∆(Ω)

G
(
Ep

[
s(Ep[X], X)− s(z,X)

]
, p
)
.

Suppose that z = Ep[X] for some p ∈ ∆(Ω) with G (0, p) = 0. By announcing z = Ep[X]

when the previous announcement is z, the trader gets a 0 payoff and a utility of G (0, p) = 0.

Because Ep

[
s(Ep[X], X) − s(z,X)

]
≥ 0 and G(·, p) is strictly increasing for all p, we have

the result.

1.2 Strongly separable securities

Given security X and functions c = {GE}E∈E , let

dc(E, v) = argmax
y∈[y,y]

min
p∈∆(E)

GE

(
Ep

[
s(y,X)− s(v,X)

]
, p
)

be the (unique from Lemma 5) myopic announcement that maximizes the trader’s current

period’s utility if her information is E and the previous announcement was v. From Lemma

5, the myopic best response is Ep∗ [X], where

p∗ ∈ argmin
p∈∆(E)

GE

(
Ep

[
s(Ep[X], X)− s(v,X)

]
, p
)
.

Definition 9. A security X is called not strongly separable under partition structure Π and

proper scoring rule s if there exist a regular c with respect to each Πi, i = 1, ..., n, and v ∈ R
such that:

(i) X(ω) ̸= v for some ω ∈
⋃
p∈P

Supp(p),

(ii) dc(Πi(ω), v) = v for all i = 1, ..., n and ω ∈
⋃
p∈P

Supp(p).

Otherwise, it is called strongly separable.

Note that MEU is a special case of Variational preferences, which are a special case of

Uncertainty Averse preferences. This implies that if a security is not strongly separable with

MEU preferences, it is not strongly separable with Uncertainty Averse preferences. The

reason is that if we can find a set of beliefs P for MEU to satisfy (i) and (ii) in Definition

3 of the main paper, we can trivially find a regular c = {GE}E∈E with Uncertainty Averse

preferences such that GE(r, p) = r for all p ∈ P and all r ∈ T , that satisfy (i) and (ii)
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in Definition 9. Equivalently, if a security is strongly separable with Uncertainty Averse

preferences, it is strongly separable with MEU preferences.

We now show that the characterization of strongly separable securities is the same as

the one for MEU preferences. Therefore, even for this larger class of preferences, classifying

a security as strongly separable does not depend on which scoring rule we use. Moreover,

all the results of Subsection 3.6 in the main paper, where we provide examples of strongly

separable securities, apply in this more general framework as well.

Proposition 5. Security X is strongly separable under partition structure Π if and only if

for any v ∈ R, for any non-empty event E ⊆ {ω ∈ Ω : X(ω) ̸= v}, there exists Trader i,

state ω ∈ E and λ ∈ R such that for all ω′ ∈ Πi(ω) ∩ E,

(X(ω′)− v)λ > 0.

Proof. Suppose that X is not strongly separable for c and v. Then, from Definition 9 part

(ii), we have that dc(Πi(ω), v) = v for all i = 1, ..., n and ω ∈
⋃
p∈P

Supp(p). Lemma 5 implies

that for each ω ∈
⋃
p∈P

Supp(p) = E, for each i ∈ I, we have Ep[X(ω) − v|Πi(ω)] = 0, for

some p ∈ P , ignoring without loss of generality states ω′ for which X(ω′) = v. Because

Supp(p) ⊆ E, it cannot be that for some Trader i, state ω ∈ E and λ ∈ R, (X(ω′)− v)λ > 0

for all ω′ ∈ Πi(ω)∩E. For the converse, note that if X is strongly separable for Uncertainty

Averse preferences, it is strongly separable for MEU preferences, hence the result follows

from Proposition 2 in the main paper.

The result is surprising because, when we move from EU to MEU, the set of separable

securities is a strict subset of the set of strongly separable securities. The intuition is that

since we can employ sets of beliefs, rather than single beliefs, we have more freedom in

finding one set that will render a security not strongly separable, by satisfying conditions (i)

and (ii) of Definition 3 in the main paper. In the proof of Proposition 2 in the main paper,

the freedom of having a set of beliefs allows us to use the Bayesian update of a possibly

different prior, one for each partition cell and each trader. This was not possible with EU

preferences.

The same intuition would dictate that we can enlarge the set of not strongly separable

securities even further with Uncertainty Averse preferences. However, this is not the case.

The reason is that part (ii) of Lemma 1 in the main paper generalizes to Uncertainty Averse

preferences (part (ii) of Lemma 5 in this Supplementary Appendix). In particular, the myopic

announcement is still the expected value of X, according to one belief with finite cost, as
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opposed to zero cost with MEU preferences. However, any beliefs that we could employ

with finite cost in order to classify a security as not strongly separable with Uncertainty

Averse preferences, we can also employ with zero cost and MEU preferences, hence the set

of not strongly separable securities does not grow further in this more general framework of

Uncertainty Averse preferences.

1.3 Non-Strategic environment

The following theorem characterizes information aggregation with respect to strongly sepa-

rable securities, when traders are myopic.

Theorem 3. Fix security X, information structure Π and continuous strictly proper scoring

rule s. Information gets aggregated for any regular ΓM(Ω, I,Π, X,P , y0, y, y, s) if and only

if X is strongly separable.

Proof. (⇐) Suppose X is strongly separable. By construction, F0(ω) ⊇ F1(ω) ⊇ ... ⊇
Fk(ω). Because Ω is finite, there exists tk such that Fk′(ω) = Fk(ω) for every tk′ ≥ tk. We

denote this set by F ≡ Fk. Let

Ai
ω,z =

{
Ep[X] : GΠi(ω) (r, p) = r, where r = Ep

(
s(Ep[X], X

)
− s
(
z,X

))}
be the set of all myopic announcements at ω given beliefs p and previous announcement z,

that have zero cost. The set is nonempty and convex because inf
p∈∆(Ω)

GE (r, p) = r, for all

r ∈ T and E ∈ E , and G is convex on beliefs with zero cost. Because we have assumed that

G(r, p) = r implies G(r′, p) = r′ for all r′ ∈ R, we have Ai
ω,z = Ai

ω,z′ , hence we write the set

as Ai
ω.

We first show that, as tk → t∞, myopic announcements get arbitrarily close to Ai
ω for all

ω ∈ F . To simplify the notation, we assume, without loss of generality, that F = Ω. Hence,

we write i’s private information at all periods t > tk as Πi(ω) instead of F ∩ Πi(ω).

From Lemma 5, Trader i’s period t utility from making the myopic announcement at

ω ∈ Ω and announcement z is

min
p∈∆(Πi(ω))

GΠi(ω)

(
Ep

(
s(Ep[X], X)− s(z,X)

)
, p

)
.

Because s is a strictly proper scoring rule, for any p and any z, r = Ep

(
s(Ep[X], X

)
−s
(
z,X

))
is weakly positive. The reason is that with beliefs p it is always optimal to announce Ep[X]

because s is a proper scoring rule and GΠi(ω)(r, p) is strictly increasing in r. By repeating the
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previous announcement z, the agent can get 0, so she can do weakly better by announcing

Ep[X]. If the myopic announcement is outside Ai
ω, then i’s utility is strictly positive because

G(r, p) > r. We now show that if i’s announcements are consistently outside of Ai
ω, as

tk → t∞, then i’s utility is bounded below by a strictly positive number.

Lemma 6. Take any sequence {yk} of Trader i’s announcements at times {tk} that are

myopic best responses to the announcements of Trader i−1. If each yk is outside of [minAi
ω−

ϵ,maxAi
ω + ϵ], for some ϵ > 0, then i’s period payoff is bounded below by a strictly positive

number.

Proof. Take a sequence of i’s myopic announcements yk → y at times {tk} that are always

outside of [minAi
ω − ϵ,maxAi

ω + ϵ], and collect the sequence pk → p of the corresponding

beliefs pk such that yk = Epk [X]. If each yk is outside [minAi
ω − ϵ,maxAi

ω + ϵ], then

Epk [X] converges to some Ep[X] /∈ Ai
ω. Because Ep

(
s(Ep[X], X

)
− s
(
z,X

))
is always weakly

positive, we have that GΠi(ω)(Ep

(
s(Ep[X], X

)
− s
(
z,X

))
, p) = η > 0. From the lower

semicontinuity of G we have that

lim inf
pk→p

GΠi(ω)

(
Epk

(
s
(
Epk [X], X)− s(yk−1, X)

)
, pk

)
≥

GΠi(ω)

(
Ep(s(Ep[X], X

)
− s
(
z,X

)
), p
)
= η > 0.

We now show that it is not possible that i’s period payoff is bounded below by a

strictly positive number η. Suppose not. Fix probability q ∈ ∆(Ω) such that G(r, q) = r,

for all r ∈ T . Such a q exists by Assumption 1. Because we minimize over all p ∈
∆(Πi(ω)), we have that GΠi(ω)

(
Ep

(
s(Ep[X], X

)
− s
(
z,X

))
, p
)
> η > 0 for all such p.

Therefore, this is true also for the Bayesian update of q, given Πi(ω), denoted qΠi(ω). We

therefore have EqΠi(ω)

(
s(EqΠi(ω)

[X], X
)
− s
(
z,X

))
> η > 0. Repeating the same proce-

dure for all ω ∈ F and corresponding Πi(ω), then integrating using that q, we have that

Eq

(
s(Eq[X], X

)
− s
(
z,X

))
> η∗ > 0, where the expectation is over F and η∗ is the expec-

tation over all η.4

Denote Eq

(
s(Eq[X], X

)
− s
(
z,X

))
as the expected score Ψk = s̄k−s̄k−1 of the trader who

makes the announcement at tk. Note that Ψk is weakly positive. Additionally, it is bounded

below by η∗ if Trader i at tk makes a myopic announcement outside of [minAi
ω−ϵ,maxAi

ω+ϵ],

for some ω ∈ F , where ϵ > 0 is uniform across tk.

4Note that for all other states ω′ the payoff is weakly positive. Also, recall that we have assumed, without
loss of generality, that F = Ω.
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The limit lim
K→∞

K∑
k=1

Ψk must be infinite because each Ψk is weakly positive and an infinite

number of them is greater than η∗. However, for any K, we have

K∑
k=1

Ψk = (s1 − s0)+

+ (s2 − s1)+

+
...

+ (sK − sK−1)

= (sK − s0)

≤ 2M,

where M = max
y∈[y,y],ω∈Ω

|s(y,X(ω))|. This is a contradiction, hence each agent i makes myopic

announcements that are arbitrarily close to Ai
ω as tk → t∞ for all ω ∈ F . By applying similar

arguments to the proof of Theorem 1 in the main paper for the MEU case, where the myopic

announcements are always inside Ai
ω, we establish that there is information aggregation.

(⇒) The proof is identical to that for the MEU case. Suppose that for any regular ΓM ,

information gets aggregated so that yk(ω) = dc(Πa(tk)(ω) ∩ Fk−1(ω), yk−1) −→ X(ω) for

every ω ∈
⋃
p∈P

Supp(p). We show that, for any regular c and v ∈ R, if (ii) in Definition 9 is

satisfied, then, (i) is violated.

Suppose there exist regular c and v ∈ R such that dc(Πi(ω), v) = v for all i = 1, ..., n and

ω ∈
⋃
p∈P

Supp(p). Consider regular ΓM(Ω, I,Π, X, c, y0, [y, y], s) with initial announcement

y0 = v. Then, the predictions ytk(ω), k = 0, 1, ..., are equal to v for all ω ∈
⋃
p∈P

Supp(p).

If we have X(ω) ̸= v for some ω ∈
⋃
p∈P

Supp(p), then, at ω all traders agree on v, which

is the wrong value of the security. This implies that there is no information aggregation, a

contradiction. Hence, condition (i) in Definition 9 is violated and X is strongly separable.

1.4 Strategic environment

The details of the strategic environment are described in the main paper. The main dif-

ference, here, is that the continuation value of each trader is determined by c = {GE}E∈E .

Recall that the state space is Φ = Ω× [0, 1]N.
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Definition 10. The continuation payoff of player ak = i at time tk and state ϕ, given

strategy profile σ, history Hk−1 and system of beliefs P is

V (Hk−1, ϕ, σ,P) =

min
p∈P(Hk−1,ϕ)

GΠk
i (ϕ)

[
Ep

∞∑
m=0

βnm

(
s
(
yk+nm(σ, ϕ|Hk−1), X(ϕ)

)
−s
(
yk+nm−1(σ, ϕ|Hk−1), X(ϕ)

))
, p

]
.

In the main paper, we characterize information aggregation in terms of Revision-Proof

equilibria (Theorem 2). The proof for Uncertainty Averse preferences is similar. The main

difference is that we need to account for p with positive cost, so that G(r, p) > r.

Before proving Theorem 4, we state the following auxiliary result, which shows that a

trader’s continuation value is always greater than her one-period payoff.

Proposition 6. In a Revision-Proof equilibrium, the continuation value for Trader i who

plays at tk is at least as much as her utility from the one-period payoff from playing the

myopic best response.

Proof. We construct a deviation strategy that guarantees a continuation value at least as

much as that of the one-period payoff from playing the myopic strategy. We will show that

for each tk, the continuation payoff of Trader i who makes the announcement is weakly more

than χk, her one-period payoff from playing the myopic strategy at tk.

We define a deviation strategy σ = (σi, σ
∗
−i), where all traders j ̸= i follow the equilibrium

strategy σ∗ and σi is identical to σ∗
i up to time tk−1. At tk, σi specifies that Trader i plays

the myopic best response. Given that i deviates and all other traders stick to the equilibrium

strategy σ∗, let H1, ..., Hm be the possible paths of announcements by all other traders j ̸= i

from tk to tk+n−1, together with the common history of announcements up to tk−1. They are

finitely many because we consider mixing over finite actions. At tk+n, σi specifies that:

(a) If V (Hm, ϕ, σ,P) ≥ 0 by playing what σ∗
i prescribes at Hm, then σi coincides with σ∗

in every succeeding information set,

(b) If V (Hm, ϕ, σ,P) < 0, then σi repeats the previous trader’s prediction.

If (a) occurs, then σi coincides with σ∗ in every succeeding information set, so Trader i

follows the recommendation of σi. If (b) occurs, then Trader i repeats the previous announce-

ment and in every succeeding information set, σi is determined using the two cases (a) and

(b). For every other information set not specified by the above procedure, σi is identical to

σ∗
i .
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We now show that at (b), Trader i will follow the recommendation to repeat the previous

announcement and get a period payoff of zero. This is true if her continuation value, exclud-

ing her current period payoff, is weakly positive, as long as all future selves follow σ. We now

show that this is true at all t ≥ tk. We show this for t = tk, without loss of generality, and

note that, from i’s perspective, there are two types of subsequent paths, given that everyone

follows σ. The first type is a path that specifies some zero payoffs initially, and at some time

t > tk+n the continuation value of i’s future self is weakly positive by playing σ∗ onwards.

The second type is a path where the future selves just repeat the previous announcement

because from σ∗ they would get a negative continuation value, hence the payoffs along this

path are zero always. This means that all paths have a weakly positive continuation value

at some time t > tk, and the previous payoffs between tk and t are zero. Hence, it is without

loss of generality to assume that the future selves at period tk+n and at each path, com-

pute weakly positive continuation value. However, because of Dynamic Inconsistency the

continuation value at some path at tk+n may be evaluated at a different prior than the one

that Trader i uses at tk to evaluate her own continuation value. The collection of all paths

generates a partition Π of state space Φ and σ generates a sequence of acts fm, for each

t > tk. We therefore have, for each E ∈ Π, and from the perspective of the future selves in

time tk+n, that

0 ≤ min
p∈P

GE

(
EpE

∞∑
m=0

βnmu(fk+n+nm), pE

)
= GE

(
EqE

∞∑
m=0

βnmu(fk+n+nm), qE

)
.

At every partition cell E, the future self at tk+n chooses a potentially different belief qE.

Let p be the belief that Trader i uses at tk to compute her continuation value. We then have

that

0 ≤ GE

(
EqE

∞∑
m=0

βnmu(fk+n+nm), qE

)
≤ GE

(
EpE

∞∑
m=0

βnmu(fk+n+nm), pE

)
.

By multiplying with β and p(E), and adding over all E ∈ Π, we have

0 ≤ β
∑
E∈Π

p(E)GE

(
EpE

∞∑
m=0

βnmu(fk+n+nm), pE

)
≤ GF

(
Ep

∞∑
m=0

βnm+1u(fk+n+nm), p

)
,

where the second inequality is due to the updating rule we have assumed in Section 1.1. This
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shows that the continuation value at any t ≥ tk is weakly positive if Trader i repeats the

previous announcement at t and gets a period payoff of zero. Therefore, she will always follow

the recommendation at (b), if by sticking to σ∗ her continuation value is strictly negative.

At tk, Trader i plays her myopic best response and gets a period payoff of χk, which is

weakly positive, and evaluated at some q so that her period utility is min
q∈P

GF

(
χk, q

)
. Because

G(·, p) is strictly increasing in the first argument for all p and GF (0, p) = 0, we have that

Ep

∑∞
m=0 β

nm+1u(fk+n+nm) ≥ 0. Because GF (·, p) is strictly increasing in the first argument

for all p, we have GF

(
χk + Ep

∑∞
m=0 β

nm+1u(fk+n+nm), p

)
≥ GF

(
χk, p

)
≥ min

q∈P
GF

(
χk, q

)
.

Hence, her continuation value is always weakly greater than her period payoff by playing the

myopic best response.

Theorem 4. Fix information structure Π and bounds [y, y].

(i) If security X is strongly separable under Π, then for any ΓS and any Revision-Proof

equilibrium, information aggregates.

(ii) If security X is not strongly separable under Π, then there exist game ΓS and a

Revision-Proof equilibrium such that information does not get aggregated.

Proof of Theorem 4. The proof follows closely the proof for the MEU case. The only changes

are in steps 1 and 4, so we omit steps 2 and 3 of the proof of Theorem 2 in the main paper.

Step 1: We show that if the security is strongly separable and its value is not constant

for each state in the support of the set of beliefs, at least one trader can achieve a strictly

positive payoff at some state and a weakly positive payoff at all other states whatever the

previous announcement.

Let Pk be the beliefs over Ω of an outside observer who hears the announcements up

to tk−1 and updates the initial set of beliefs P given the equilibrium strategies, but has no

private information about Ω. Let Supp(Pk) be the union of the supports of all p ∈ Pk. For

each ω ∈ Supp(Pk) and i ∈ I, let E = Supp(Pk) ∩ Πi(ω) and define

Aik
ω ≡

{
Ep[X] : p ∈ Pk, GE (r, p) = r, where r = Ep(s(Ep[X], X)− s(z,X))

}
to be the set of all myopic announcements of Trader i at ω. Note that Aik

ω does not depend
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on the previous announcement z, because of Assumption 1 that the zero cost probabilities

are independent of r.

This set is non-empty, convex from Assumption 2, and compact. Let minAik
ω (maxAik

ω ) be

the minimum (maximum) value. We first show that, in any equilibrium, the announcement

of Trader i gets arbitrarily close to the announcement of Trader i− 1 and to Aik
ω , for all

ω ∈ Supp(Pk), as tk → t∞. Note that Aik =
⋂

ω∈Supp(Pk)

Aik
ω cannot be empty, otherwise the

outside observer would understand that some state ω is not true, because the announcements

do not get arbitrarily close to Aik
ω as tk → t∞. Hence, the announcements get arbitrarily

close to Aik as well.

Lemma 7. For any ϵ > 0 and Trader i, there is period t′ such that for all tk > t′ where

i makes an announcement, |yk − yk−1| < ϵ and yk ∈ [minAik
ω − ϵ,maxAik

ω + ϵ], for all

ω ∈ Supp(Pk).

Proof. We first show that, for any ϵ > 0, if Trader i−1’s announcement z is outside [minAik
ω −

ϵ,maxAik
ω +ϵ], for some state ω and time tk, then i’s expected payoff from playing her myopic

best response is greater than some χk > 0, and that χk cannot converge to 0 as tk → t∞.

There are two cases. First, i’s myopic announcement is outside of [minAik
ω −ϵ′,maxAik

ω +ϵ′] for

some ϵ′ > 0 and some subsequence {tk} of periods. Then, Lemma 6 shows that, irrespective

of the announcements of i − 1, i’s period payoff is bounded below by a strictly positive

number. Second, i’s myopic announcement is always inside [minAik
ω ,maxAik

ω ] after some t′.

This is the MEU case, which is covered in Lemma 3 of the main paper.

We next show that χk cannot converge to 0 as tk → t∞. From Proposition 6, Trader

i’s continuation payoff in equilibrium must be weakly higher than her one-period payoff χk.

This implies that if Trader i− 1 makes announcements outside of [minAik
ω − ϵ,maxAik

ω + ϵ]

for infinitely many tk, then i’s expected continuation payoff (which is greater than χk) does

not converge to zero. We now show that this is impossible.

Suppose not. Then, the expected continuation payoff for i is bounded below by a pos-

itive number. For all other traders it is weakly positive, again using Proposition 6, and

because their one-period payoff is always weakly positive. Because the continuation payoff

is minimized over all beliefs in Pk, we can pick a prior p with zero cost, take its Bayesian

update at the decision node at time tk and define Ψk to be the sum of all traders’ expected

continuation payoffs (given that p) at tk, divided by βk,

Ψk = (sk − sk−1) + β(sk+1 − sk) + β2(sk+2 − sk+1) + . . .

Recall that if p ∈ P0, all of its Bayesian updates belong to P0 and therefore have zero cost
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as well. The sk is the expected score of prediction yk, where the expectation is over all ϕ,

given some p ∈ Pk and the moves of players according to the mixed equilibrium.

For any K, we have

K∑
k=1

Ψk = (s1 − s0) + β(s2 − s1) + β2(s3 − s2) + . . .

+ (s2 − s1) + β(s3 − s2) + β2(s4 − s3) + . . .

+
...

+ (sK − sK−1) + β(sK+1 − sK) + β2(sK+2 − sK+1) + . . .

= (sK − s0) + β(sK+1 − s1) + β2(sK+2 − s2) + . . .

≤ 2M/(1− β),

whereM = max
y∈[y,y],ω∈Ω

|s(y,X(ω))|. But this contradicts the fact that i’s expected continuation

payoff is bounded below by a positive number. We then have that, in equilibrium, Trader

i − 1 makes announcements that are arbitrarily close to Aik
ω , for each ω ∈ Supp(Pk), hence

arbitrarily close to Aik. Note that, because
K∑
k=1

Ψk is bounded above by a positive number

for any K, and each Ψk is weakly positive, we have that lim
K→∞

K∑
k=1

Ψk = χ0 for some finite χ0.

We finally show that, given that i−1 announces arbitrarily close to Aik, the announcement

of i gets arbitrarily close to the announcement of i − 1 in equilibrium, and therefore the

announcements of i get arbitrarily close to Aik. Suppose not, so that |yk − yk−1| > ϵ

for a fixed ϵ and for infinitely many tk, where i makes an announcement. Suppose that

in every tk, where i makes an announcement, we evaluate i’s period payoff at tk using

pk ∈ P t
Πi(ω)

, such that Epk [X] = yk−1 if yk−1 ∈ Aik
ω , Epk [X] = minAik

ω if yk−1 < minAik
ω

(but arbitrarily close to it) or Epk [X] = maxAik
ω if yk−1 > maxAik

ω (but arbitrarily close to

it).5 In all cases and since i − 1’s announcement is arbitrarily close to Aik
ω , we have that

i’s period payoff, Epk

(
s
(
yk, X

)
− s
(
yk−1, X

))
, is strictly negative. As scoring rules are

order sensitive, the period payoff will also be strictly negative if i’s announcement is exactly

ϵ away from the announcement of i − 1. By collecting these pk for all such tk, we have

that Epk

(
s
(
Epk [X] + ϵ,X

)
− s
(
Epk [X], X

))
< 0, where s

(
yk−1, X

)
is arbitrarily close to

s
(
Epk [X], X

)
by continuity.6

5Note that if the previous announcement z is inside Aik and therefore inside each Aik
ω , then there exists

p ∈ P0 with Ep[X] and zero cost. But then, the third point of Lemma 5 implies that i’s myopic response is
to repeat it. Therefore, we are back to the MEU case, where all priors have zero cost.

6We assume, without loss of generality, that i’s announcement is always ϵ-higher than the previous
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Since the set of all beliefs is compact, there is a converging sequence {pk} of beliefs. If

lim
pk→p

Epk

(
s
(
Epk [X] + ϵ,X

)
− s
(
Epk [X], X

))
= 0, the continuity of the scoring rule implies

that Ep

(
s
(
Ep[X] + ϵ,X

))
= Ep

(
s
(
Ep[X], X

))
so that both announcements Ep[X] + ϵ

and Ep[X] are optimal given p, contradicting that s is a strictly proper scoring rule. If

lim
pk→p

Epk

(
s
(
Epk [X] + ϵ,X

)
− s
(
Epk [X], X

))
< 0, i’s period payoff given some beliefs pk is

bounded above by a strictly negative number. But this is the first element of some Ψk.

We have already shown that
K∑
k=1

Ψk is bounded above by a positive number for each K and

each Ψk is weakly positive because a trader can always repeat the previous announcements

as shown in Proposition 6. Therefore, we have that lim
k→∞

Ψk = 0, which contradicts that

the first term can be bounded above by a negative number. Since this is true for all states

in Supp(Pk), the above statements are also true for Aik and the result follows. That is,

given that i − 1 announces arbitrarily close to Aik, the announcement of i gets arbitrarily

close to the announcement of i− 1 in equilibrium, and therefore the announcements of i get

arbitrarily close to Aik.

Given an equilibrium, the updating of beliefs Pk may never stop for sufficiently high tk

as traders play their mixed strategies and do prior-by-prior updating. Let P be a set of limit

beliefs of this sequence {Pk} with some probability. Let D be the collection of these sets of

limit beliefs that describe some uncertainty about the value of the security. That is, for each

P ∈ D, there exist ω, ω′ ∈
⋃
p∈P

Supp(p) such that X(ω) ̸= X(ω′).

From Lemma 5, we know that given beliefs P ∈ D and at any state ω ∈
⋃
p∈P

Supp(p), each

Trader j can achieve a weakly positive payoff by making the myopic announcement dc(E, z),

where z is the previous announcement.

Generalizing the notion of Ostrovsky (2012), we define the instant opportunity of Trader

i, given regular c and previous announcement z, to be

min
q∈P

G

[∑
ω∈Ω

q(ω)

[
min

p∈PΠi(ω)

GΠi(ω)

[
Ep

(
s
(
Ep[X], z), X

)
− s
(
z,X

))
, p

]]
, q

]
Note that at each partition cell Πi(ω), Trader i chooses a possibly different p ∈ PΠi(ω)

that minimizes her expected utility. The instant opportunity is the ex ante (minimal over

P) utility aggregating over all partition cells.

announcement. Similar arguments can be employed if it was always ϵ-lower or it was alternating as we can
always get a subsequence of pk for which i’s announcement is always higher (or lower).
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The following lemma shows that if the security X is strongly separable and beliefs P ∈ D
describe some uncertainty about X, then the instant opportunity of some Trader i is strictly

positive, irrespective of what the previous announcement is.

Lemma 8. If security X is strongly separable, then for every P ∈ D there exist χ > 0 and

i ∈ I such that, for every z ∈ R, the instant opportunity of i given P and z is greater than

χ.

Proof. Note that the expression for the instant opportunity inside the brackets,

min
p∈PΠi(ω)

GΠi(ω)

[
Ep

(
s
(
Ep[X], z), X

)
− s
(
z,X

))
, p

]
, (1)

is i’s expected payoff given Πi(ω), when making the myopic announcement and the previous

announcement is z. From Lemma 5, this is weakly positive for all ω ∈
⋃
p∈P

Supp(p). Moreover,

because P is regular, each p ∈ P assigns positive probability to each Πi(ω), where ω ∈⋃
p∈P

Supp(p) = E. Therefore, we only need to show that there exists some trader i ∈ I, such

that for any z, there is some Πi(ω) for which the expression in (1) is above a strictly positive

lower bound. Note that the lower bound must be the same for all z.

For each ω and i ∈ I, define

Ai
ω =

{
Ep[X] : GΠi(ω) (r, p) = r, where r = Ep

(
s(Ep[X], X

)
− s
(
z,X

))}
and let minAi

ω (maxAi
ω) be the minimum (maximum) value. Recall that, as we have ex-

plained before, Ai
ω is nonempty, convex, compact, and independent of the previous announce-

ment z. Let Ai =
⋂

ω∈F
Ai

ω. There are three cases.

Case 1: For some i, Ai = ∅.
There are two subcases. First, the myopic best response, Ep[X], given the previous

announcement z, is for p with positive cost, for some ω and Trader i, so that GΠi(ω)(r, p) > r,

where r is i’s payoff from the announcement. As we show in the proof of Lemma 6, her period

utility is strictly positive, hence she has an instant opportunity. Second, the myopic best

response is for p with GΠi(ω)(r, p) = r. Then, as we show in the MEU environment, Case 1

of Lemma 4 in the main paper, there is an instant opportunity, irrespective of the previous

announcement.

Case 2: Ai ̸= ∅ for all i ∈ I and
⋂
j∈I

Aj ̸= ∅.

This is the same as Case 2 in the proof of Theorem 1 in the main paper. There are two

subcases. First, in all states that are considered possible, security X pays the same. This is
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impossible, because we have assumed that there is uncertainty about X given P . Second,

there is uncertainty about X. As we show in Case 2 in the proof of Theorem 1 in the main

paper, this implies that X is not strongly separable, a contradiction.

Case 3: Ai ̸= ∅ for all i ∈ I but
⋂
j∈I

Aj = ∅.

We will show that this case is impossible. Lemma 7 shows that in any set of beliefs P
that can arise in equilibrium after a sufficiently large tk, i’s announcements get arbitrarily

close to Ai. Moreover, Trader i’s announcements get arbitrarily close to the announcements

of i − 1, which get arbitrarily close to Ai−1. At the limit set of beliefs, P , we have that

Ai−1∩Ai ̸= ∅ for each i ∈ I. Continuing inductively over all traders, we have that
⋂
j∈I

Aj ̸= ∅,

a contradiction.

Steps 2 and 3 are identical to those for the MEU environment so we omit them.

Step 4: This step concludes the proof by showing that the presence of a “non-vanishing

arbitrage opportunity” is impossible in equilibrium.

Let P(Hk−1) be the set of updated beliefs for the outside observer at time tk, given

the mixed equilibrium, the set of prior beliefs P and history Hk−1. Note that with mixed

strategies, Hk−1 occurs with some probability. Moreover, because the equilibrium profile

may consist of mixed strategies, P(Hk) may not be the same as P(Hk−1), however for big

enough tk, they will have the same support on the state space Ω as it is finite. Consider such

a big enough tk.

Fix tk, history Hk−1 and suppose i makes an announcement. Her continuation payoff

given history Hk−1 and state ϕ is

V (Hk−1, ϕ) = min
p∈P(Hk−1,ϕ)

G(Hk−1,ϕ)

(
Ep

∞∑
m=0

βnm (sk+nm(ϕ
′)− sk+nm−1(ϕ

′)) , p

)
,

where sk+nm(ϕ
′) is the score at state ϕ′ and time tk+nm.

Using Proposition 6, her continuation payoff V (Hk−1, ϕ) is greater than the one-period

payoff from playing the myopic strategy at tk. Because this is true for all states ϕ ∈⋃
p∈P(Hk−1)

Supp(p) that the outside observer considers possible at tk, given history Hk−1,

we have that min
p∈P(Hk−1)

GHk−1

(
EpV (Hk−1, ϕ), p

)
is greater than i’s instant opportunity given

beliefs P(Hk−1).

Again using Proposition 6, the continuation payoff at tk of each Trader j ̸= i, who
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announces at tk, is weakly positive at each state ϕ and history Hk−1. Since this is true for

all states ϕ ∈
⋃

p∈P(Hk)

Supp(p), we have that min
p∈P(Hk−1)

GHk−1

(
EpV (Hk−1, ϕ), p

)
≥ 0.

Since min
p∈P(Hk−1)

GHk−1

(
EpV (Hk−1, ϕ), p

)
is weakly positive for each i ∈ I, we have that∑

i∈I
GHk−1

(
EpV (Hk−1, ϕ), p

)
is weakly positive for any p ∈ P(Hk−1). Moreover, it is strictly

positive if i’s instant opportunity is strictly positive given P(Hk−1). Since this is true for all

p ∈ P(Hk−1), fix prior q ∈ P0 with zero cost. By assumption, all of its Bayesian updates will

also have zero cost. For any previous announcement and considering the (unique) probability

over histories Hk−1 that can arise at tk, generated by the (possibly) mixed equilibrium, we

can let Ψk be the sum of all players’ expected continuation payoffs at tk, divided by βk as

Ψk = (sk − sk−1) + β(sk+1 − sk) + β2(sk+2 − sk+1) + . . .

The sk is the expected score of prediction yk, where the expectation is over all ϕ, given the

fixed q ∈ P with zero cost and the moves of players according to the mixed equilibrium. We

keep q ∈ P constant for all tk. We then have that Ψk is weakly positive. Additionally, it

is strictly positive if i’s expected instant opportunity is strictly positive and it is i’s turn to

make an announcement. That is, with some probability, some history Hk−1 occurs and i’s

instant opportunity is strictly positive.

The last step is identical to that of Ostrovsky (2012) because all Ψk are calculated using

the same prior q ∈ P . The proof of Lemma 7 shows that lim
K→∞

K∑
k=1

Ψk = χ0 for some finite χ0.

From Step 3 (omitted in this proof because it is identical to the MEU case), this limit must

be infinite because each Ψk is weakly positive and an infinite number of them is greater than

η∗. Hence, both cases of Step 3 are impossible and yk must converge to the intrinsic value

of security X.

Part (ii) is identical to the one for the MEU environment so we omit it.

1.5 Fixed set of zero cost priors

In order to prove Theorems 3 and 4, we have maintained Assumption 1, that the set P0

of zero cost priors is fixed, so that if G(r, p) = r for some r ∈ T , then G(r′, p) = r′ for

all r′ ∈ T . This property is true for Variational preferences and it is also true for Smooth

Ambiguity preferences, as long as P0 is always a singleton. However, it is not true for more
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general Uncertainty Averse preferences. We now argue why we cannot dispense with this

assumption.

In the proofs for both the myopic and the strategic environments, we show that, as

tk → t∞, traders will eventually make announcements that are within Ai
ω, the set of Ep[X]

for all beliefs p that have zero cost given ω. Because P0 is fixed for all r ∈ T , set Ai
ω is

independent of the previous announcement. With Uncertainty Averse preferences, however,

this is not the case. Let

Ai
ω,z =

{
Ep[X] : GΠi(ω) (r, p) = r, where r = Ep

(
s(Ep[X], X

)
− s
(
z,X

))}
be the set of all myopic announcements at ω given previous announcement z and beliefs p,

that have zero cost. The set is nonempty for Variational and Smooth Ambiguity preferences

because there is at least one belief p such that G(r, p) = r for all r ∈ T .

We now argue that if Ai
ω,z depends on the previous announcement, information may

not get aggregated. For simplicity, we consider the non-strategic environment but a similar

argument applies to the strategic environment. Note first that, as in the proof of Theorem 3

with Uncertainty Averse preferences, traders will eventually make announcements in Ai
z =⋂

ω′∈F(ω)

Ai
ω′,z, as tk → t∞.

Suppose that Ai
zi−1

̸= ∅ for all i ∈ I and
⋂
j∈I

Aj
zj−1

̸= ∅, where zj−1 is the previous

announcement when j announces, which is Case 2 in the proof of Theorem 1 of the main

paper. Suppose also that security X pays differently across at least two states in the common

knowledge event F(ω). With Variational preferences, because Aj
zj−1

does not depend on zj−1,

we can fix z ∈
⋂
j∈I

Aj
zj−1

̸= ∅ as the previous announcement for all traders. From the third

point of Lemma 5, if the previous announcement is z ∈ Ai
zi−1

, then Trader i will repeat

it. We then have that dc(Πi(ω
′), z) = z for all i ∈ I and ω′ ∈

⋃
p∈PF(ω)

Supp(p). But this

implies that X is not strongly separable, a contradiction. With general Uncertainty Averse

preferences, however, fixing z ∈
⋂
j∈I

Aj
zj−1

as the previous announcement for all traders may

not have the same effect because it could be that Aj
zj−1

̸= Aj
z. If z /∈ Aj

z, then Trader j will

not announce z. This means that X may be strongly separable but traders never agree on

the announcement, hence there is no information aggregation.
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2 Existence of Revision-Proof Equilibrium

Revision-Proof equilibria do not always exist in games with an infinite horizon, due to

dynamic inconsistency. This is true also in the case of complete information games with

time inconsistency and infinite actions, as in Asheim (1997) and Ales and Sleet (2014).

In this section, we show that if the game is continuous at infinity, then a Revision-Proof

equilibrium exists. Continuity at infinity is achieved by shortening the time period, tk, as

k → ∞, so that the discount factor decreases. This is similar to the approach of Ostrovsky

(2012).

We first establish that a Consistent-Planning equilibrium always exists in games with

finitely many actions and periods, using the results of Schlag and Zapechelnyuk (2020). We

then assume that at least one Consistent-Planning equilibrium is strict, so that the one-shot

best response at each information set is unique, given the fixed strategy of the future selves.

We argue that this is a mild assumption. In the last round, everyone plays the myopic best

response, which is unique from Lemma 1 of the main paper, hence the condition for strict

equilibria is satisfied. In previous rounds, we have the freedom to determine off-equilibrium

beliefs that will make deviations strictly suboptimal. We illustrate this using a specific

example. We then show that a strict Consistent-Planning equilibrium is Revision-Proof.

Finally, by adapting the proofs of Fudenberg and Levine (1983, 1986), we approximate the

infinite game with a sequence of finite games and show that the sequence of Revision-Proof

equilibria in the finite games converges to a Revision-Proof equilibrium in the infinite game.

2.1 Finite games

Recall that a game is a tuple ΓS(Ω, I,Π, X,P , y0, y, y, s, β). An assessment A = {σ,P} is a

strategy profile σ ∈ Σ and a system of beliefs P = {P(I)}I∈I , where I is the collection

of all information sets I and each P(I) is compact and convex. Assessment A = {σ,P} is

consistent if the system of beliefs is generated by the prior-by-prior updating of the set of

common priors P , given the strategy σ. As with Ostrovsky (2012), we discretise the action

space, so that each trader can only choose among a finite set of possible announcements

Y ⊆ [y, y]. We denote a game with k < ∞ periods and finitely many actions as Γk. We

denote a game with infinitely many periods and finitely many actions as Γ∞.

We repeat below the definition of a Consistent-Planning equilibrium, which checks for

one-shot deviations, as the trader considers the strategies of her future selves to be fixed.

If the one-shot best response at each information set is unique, we say that the Consistent-

Planning equilibrium is strict.
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Definition 11. Consistent pair (σ∗,P) is a Consistent-Planning equilibrium if there is no

information set Ik, player ak = i and alternative strategy σ = (σi, σ
∗
−i) with σi,k′ = σ∗

i,k′ for

all k′ ̸= k, such that

Vi(Ik, σ,P) > Vi(Ik, σ
∗,P).

It is a strict Consistent-Planning equilibrium if, for each information set Ik, there is no

alternative strategy σ = (σi, σ
∗
−i) with σi,k′ = σ∗

i,k′ for all k′ ̸= k, such that

Vi(Ik, σ,P) = Vi(Ik, σ
∗,P).

We first establish that every finite game Γk has a Consistent-Planning equilibrium.

Proposition 7. For every finite game Γk with k < ∞, there exists a Consistent-Planning

equilibrium.

This is a direct consequence of the proof of Theorem 1 in Schlag and Zapechelnyuk (2020).

They have a very similar setting, consisting of a finite game with players who have sets of

beliefs and update prior-by-prior. The only difference is that their utility function minimizes

the maximum loss, whereas in our setting the players have MEU preferences. However, the

only place in the proof where the utility function plays a role is to show that it is continuous

with respect to the strategy of a player who only moves at an information set, and with

respect to the strategies of everyone else who moves later, including her future selves. This

is also true in our model. Excluding that difference, their equilibrium notion is essentially

that of Consistent-Planning, so we have the result.

We now show that a strict Consistent-Planning equilibrium is Revision-Proof in finite

games. We first restate the definition of a Revision-Proof equilibrium.

Definition 12. Consistent pair (σ∗,P) is a Revision-Proof equilibrium if there is no in-

formation set Ik, player ak = i and alternative strategy σ = (σi, σ
∗
−i), such that for all

information sets I that are reachable from Ik and where i makes an announcement,

Vi(I, σ,P) ≥ Vi(I, σ∗,P),

with the inequality strict for at least one I.

Note that this equilibrium notion is slightly stronger than the Revision-Proof equilibrium

we have defined in the main paper, because here we check deviations at all information sets,

not only those that are reached in the equilibrium path. All of the existence results in this

section for Revision-Proof equilibria hold for this stronger version and therefore also for the

the weaker version of the main paper.
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Lemma 9. If (σ∗,P) is a strict Consistent-Planning equilibrium in game Γm, then it is a

Revision-Proof equilibrium.

Proof. Suppose not, so that there is information set Ik, player ak = i and alternative strategy

σ = (σi, σ
∗
−i), such that for all information sets I that are reachable from Ik and where i

makes an announcement,

Vi(I, σ,P) ≥ Vi(I, σ∗,P),

with the inequality strict for at least one I.
In the last period tm, where i makes an announcement, we have σi,m = σ∗

i,m from the

definition of a strict Consistent-Planning equilibrium. In period tm−n, where i makes her

penultimate announcement and given that at tm we have σi,m = σ∗
i,m, the strictness of

Consistent-Planning equilibrium implies that i has a unique best response at tm−n and

σi,m−n = σ∗
i,m−n. This means that, given that the future self at tm has a unique optimal

action at each information set given her beliefs, it is not possible for i at tm−n to suggest

to her future self to deviate to another action that she is indifferent to. Given this restric-

tion, the strictness of the Consistent-Planning equilibrium implies that at tm−n her optimal

action is also unique. Going backwards until Ik, there is no alternative strategy σ that will

make all future selves of i weakly better off and at least one strictly better off, which is a

contradiction.

We now make the assumption that among the set of all Consistent-Planning equilibria,

at least one is strict.

Assumption 3. For every finite game Γk with k < ∞, if the set of Consistent-Planning

equilibria is nonempty, then at least one is strict.

We argue that this is a mild assumption. First, everyone plays the myopic best response

in the last round, which is unique from Lemma 1 of the main paper, hence the condition for

strict equilibria is satisfied. Second, in previous rounds, we have the freedom to determine

off-equilibrium beliefs that will make deviations strictly suboptimal.

We now show an example where everyone playing the unique myopic best response is a

strict Consistent planning and therefore Revision-Proof equilibrium, that aggregates infor-

mation for any discount factor. Note that, in standard finite games with Expected Utility,

two states with conditionally independent signals, and a logarithmic market scoring rule,

Chen et al. (2010) show that there is a unique weak Perfect Bayesian equilibrium, where

everyone plays their unique myopic best response in every round.

Suppose there are four states and security X pays {1, 2, 3, 4}, so we refer to states in

terms of their payoffs. Ann’s partition is {{1, 2}, {3, 4}}, whereas Bob’s is {{1, 4}, {2, 3}}.
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State Ann Bob Ann
1 1 1 1
2 1 2 2
3 3 3 3
4 3 4 4

Table 1: Announcements in Revision-Proof Equilibrium

They have a common set of priors, consisting of all probability measures, ∆(Ω).7There are

three periods, so Ann announces first, then Bob, and then Ann. The initial announcement

by the market maker is 1.

We show that everyone playing their myopic best response is a strict Consistent-Planning

and therefore Revision-Proof equilibrium. At {1, 2}, Ann announces 1, whereas at {3, 4},
she announces 3, thus revealing her type to Bob.8 At state 1, Ann announces 1 and reveals

to Bob that the state is not 4. Hence, Bob knows that the state is 1 and announces 1,

revealing to Ann the true state, so she repeats the announcement. Table 2.1 specifies the

myopic announcements at each state.

Suppose that at state 1, Ann deviates by mixing between the two myopic announcements,

1 and 3. A deviation of 3 is interpreted by Bob as Ann being a {3, 4} type, hence he announces
4. In the last period, Ann is at an off-equilibrium information set, and we assume that she

also believes that she is a {3, 4} type, whereas Bob is a {1, 4} type, hence she repeats 4.

This means that Ann in the last period gets a zero payoff. In the first period, her deviation

of 3 provides a lower payoff than the myopic best of 1. Hence, she does not want to deviate.

Any announcement z, different from 1 and 3, leads to an off-equilibrium information set for

both Bob and Ann in the last two periods. We then assume that they form a unique belief

p so that Ep[X] = z, hence they repeat z in periods 2 and 3. As a result, Ann in the first

period gets a lower payoff than the myopic best but in the last period she gets zero. Hence,

she has no incentive to deviate. In periods 2 and 3, Ann and Bob announce for the last time

so they play their myopic best response. Similar arguments apply to all other states, so this

is a Revision-Proof equilibrium.

The myopic is also a Revision-Proof equilibrium if we have more than three periods. From

period 3, at all states the true value of the security is revealed and Ann agrees with Bob on

the announcement. The only difference from the three-period game is that Bob in period 2 is

strategic, as he announces at least once more. Note that Bob learns and announces the true

7We assume the set of all priors ∆(Ω) for simplicity, so that the myopic best response is always one of
the values of X, {1, 2, 3, 4}. The only drawback of the example is that some beliefs assign probability zero
to the true state.

8Recall that, from Lemma 1 in the main paper, Ann’s myopic best response is to announce as close as
possible to the previous announcement, given her posterior beliefs.
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value of X in period 2, at all states. If at state 1 he deviated by announcing z ∈ {2, 3, 4},
Ann would repeat z, thinking this is the true value. Bob in periods 4 and above is off-

equilibrium and repeats the previous announcement, using the same beliefs we constructed

for Ann in the three-period game. Hence, Bob in period 2 is worse off by not announcing

the myopically best, whereas he does not gain anything from period 4 onwards.

Combining Proposition 7, Assumption 3, and Lemma 9, we have the following lemma.

Lemma 10. For every finite game Γk with k < ∞, there exists a Revision-Proof equilibrium.

2.2 Truncated games with finitely many periods

For each game Γ∞ with infinitely many periods, we will generate a sequence of truncated

games with finitely many periods. Following Fudenberg and Levine (1983, 1986), we assume,

without loss of generality, that there is a “do nothing” or null action at each time t, denoted 0.

The 0 action means that the trader repeats, with probability 1, the previous announcement.

Note that the null action guarantees that the agent’s payoff at that period is 0, irrespective

of the previous announcement. With each game Γ∞, we associate a collection of truncated

games. A truncated game Γ(m) effectively ends in time tm, because for all tk > tm, the only

available action for any trader is the null action of repeating the previous announcement

and their beliefs no longer update. Hence, the announcement in tm is repeated by everyone.

Note that a game Γm ends at tm, whereas game Γ(m) has infinitely many periods but traders

can only choose the null action after tm.

More formally, let Σ(m) be the strategy space of truncated game Γ(m). Each strategy

profile σ ∈ Σ(m) is of the form (σ1, σ2, . . . , σm, 0, 0, . . .), where σk maps information sets

at time tk to the set of possible (finite) announcements Y , for the agent who makes an

announcement at tk. Note that Σ(1) ⊆ Σ(2) ⊆ . . . ⊆ Σ(∞), where Σ(∞) = Σ is the strategy

space of the infinite horizon game. Moreover, each Σ(m) is compact.

Let A(m) be the collection of assessments A = (h,P) such that h ∈ Σ(m) and beliefs

do not update after m, so that if k > m and information set Ik−1 immediately precedes Ik,

then P(Ik) = P(Ik−1). Let P(m) be the collection of all systems of beliefs P of game Γ(m)

and note that P(m) is compact.

An assessment A = (h,P) is an equilibrium in Γ(m) only if A = (h,P) ∈ A(m). Note

that A(1) ⊆ A(2) ⊆ . . . ⊆ A(∞), where A(∞) is the collection of all assessments in the

infinite horizon game Γ∞. Intuitively, after tm no trader changes her action, hence there is

no information revelation and beliefs do not update. Set A(∞) is compact because it is a

closed subset of ×∞
m=1(Σ(m)× P(m)), which is the product of compact sets in the product

topology, and therefore also compact.
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2.3 Continuity

In order to approximate an equilibrium in the infinite game Γ∞ we need to define the

distance between assessments. Recall that Φ is the space of all uncertainty and let δ(p, q) =

sup
E∈Φ

|p(E)−q(E)| be the distance between two beliefs over Φ. The Hausdorff distance between

two sets of measures P , P ′ is

δ(P ,P ′) = max

{
sup
p∈P

δ(p,P ′), sup
p′∈P ′

δ(P , p′)

}
,

where δ(q,P) = inf
p∈P

δ(q, p). The set of all nonempty compact subsets of Φ endowed with the

Hausdorff topology is a compact metric space (Theorem 3.71(3) in Aliprantis and Border

(2013)).

A system of beliefs specifies a compact set of beliefs for each information set. We define

the distance between two systems of beliefs P,P ′ as

d(P,P ′) = sup
Ik∈I

{
1

k
min{δ(P(Ik),P ′(Ik)), 1}

}
.

This metric is motivated in Fudenberg and Levine (1983). It specifies that two systems

of beliefs are close to each other if they only differ in the distant future. We can similarly mea-

sure the distance between two strategies σ, σ′ with d(σ, σ′) = sup
Ik∈I

{
1
k
min{δ(σ(Ik), σ

′(Ik)), 1}
}
,

where σ(Ik) is the strategy of the trader who announces at tk and information set Ik. Finally,

we can also measure the distance between truncated systems of beliefs (and strategies) that

occur after an information set. Given an information set Ik, let Ik(P) be the restriction of

P to all information sets that succeed Ik, including Ik. The same notation Ik(σ) applies

to a strategy σ. Then, the distances d(Ik(P), Ik(P ′)) and d(Ik(σ), Ik(σ
′)) calculate the

distance only with respect to information sets that follow Ik.

We can now define the distance between two assessments A = {σ,P},A′ = {σ′,P ′}:

d(A,A′) ≡ sup
Ik∈I

{
d(Ik(σ), Ik(σ

′)),

{
sup

hak
∈Σak

d(Ik(hak , σ−ak), Ik(hak , σ
′
−ak

))

}
, d(Ik(P), Ik(P

′))

}
,

where ak is the announcer at time tk and information set Ik.

This metric is also motivated in Fudenberg and Levine (1983). Two assessments A and

A′ are close to each other if the following three conditions are true at each information set

Ik. First, the distributions over actions that are generated by σ and σ′ for every subsequent

information set are close to each other. Second, the distributions over actions are close to
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each other even when trader ak deviates with hak at Ik. Finally, the sequence of sets of

beliefs that are generated from P,P ′ given Ik are also close to each other.

Given an assessmentA = {σ,P}, let Vi(I, σ,P) be i’s continuation payoff at information

set I. We say that the game is uniformly continuous if whenever two assessments are close

to each other, the continuation payoffs are also close, for each information set.

Definition 13. The game Γ∞ is uniformly continuous if for all information sets I and

all sequences of assessments {An} = {σn,Pn}, {A′n} = {σ′n,P ′n}, An → A′n implies∣∣Vi(I, σn,Pn)− Vi(I, σ′n,P ′n)
∣∣→ 0 for all i ∈ I.

Ostrovsky (2012) generates a uniformly continuous game by shortening the time period

tm as m → ∞. For example, in his version of the Kyle (1985) model, he sets tk = 1 −
1
2k
. Although he does not specify how he achieves uniform continuity in the prediction

market model, we use something similar. Following Dimitrov and Sami (2008), we assume

that the payment at tm is βm(s(ytm , x
∗) − s(ytm−1 , x

∗)), instead of s(ytm , x
∗) − s(ytm−1 , x

∗).

This is equivalent to shortening the period tm as m → ∞, so that the discounting factor

needs to decrease accordingly. Although the results in the main paper are true with both

definitions, the former ensures that the game is uniformly continuous. We refer to this

uniformly continuous game with finitely many announcements as Γ∞.

Let Ik≤m be the collection of all information sets Ik at times tk ≤ tm and P(∞) the

collection of all systems of beliefs. Let constant wm be the greatest variation in any agent’s

payoff and for any system of beliefs, from strategies σ, τ that are identical for all information

sets up to time tm−1, written as σ =m−1 τ .

wm ≡ sup
I∈I

P∈P(∞)

sup
i∈I

σ=m−1τ

∣∣∣∣Vi(I, σ,P)− Vi(I, τ,P)

∣∣∣∣.
Definition 14. The game Γ∞ is continuous at infinity if wm → 0 as m → ∞.

It is straightforward that because Γ∞ is uniformly continuous, it is also continuous at infinity.

2.4 Existence of equilibrium in Γ∞

Following Fudenberg and Levine (1983, 1986), we prove existence in the infinite game Γ∞

through a series of lemmas. We first define the notion of an ϵ-Revision-Proof equilibrium.

Definition 15. Consistent pair (σ∗,P) is an ϵ-Revision-Proof equilibrium if there is no

information set Ik, player ak = i and alternative strategy σ = (σi, σ
∗
−i), such that for all
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information sets I that are reachable from Ik and where i makes an announcement,

Vi(I, σ,P) ≥ Vi(I, σ∗,P) + ϵ,

with the inequality strict for at least one I.

Lemma 11. If (h∗,P) ∈ A(m) is an ϵ-Revision-Proof equilibrium in Γ(m), then (h∗,P) is

an (ϵ+ wm)-Revision-Proof equilibrium in Γ∞.

Proof. Suppose (h∗,P) is an ϵ-Revision-Proof in Γ(m) and let g ∈ Σ(∞). Set h = (g1, g2, . . . , gm, 0, . . .).

There are two cases. First, for any information set I ∈ I where agent i makes an announce-

ment, we have

Vi(I, hi, h
∗
−i,P)− Vi(I, h∗,P) ≤ ϵ.

Because h and g differ only after tm, we have

Vi(I, gi, h∗
−i,P)− Vi(I, hi, h

∗
−i,P) ≤ wm.

Adding the two inequalities we have

Vi(I, gi, h∗
−i,P)− Vi(I, h∗,P) ≤ ϵ+ wm.

Second, there is information set I and information set I ′ that is reachable from I,
both before time tm, where i makes the announcement and we have Vi(I, hi, h

∗
−i,P) −

Vi(I, h∗,P) > ϵ but Vi(I ′, hi, h
∗
−i,P) − Vi(I ′, h∗,P) < ϵ, so that the future self at I ′

will not follow i’s recommendation at I when considering an ϵ-Revision-Proof equilibrium.

Because h and g differ only after tm, we have Vi(I ′, gi, h
∗
−i,P)−Vi(I ′, h∗,P) < ϵ+wm, hence

this deviation would not be followed by a future self at I ′ when considering an (ϵ + wm)-

Revision-Proof equilibrium.

For any information set Ik where tk ≤ tm, the conditions on beliefs are satisfied because

(h∗,P) is an ϵ-Revision-Proof equilibrium in Γ(m). For any other information set, the

conditions on beliefs are also satisfied because everyone chooses the null action of repeating

the previous announcement, hence there is no updating of information or beliefs.

Lemma 12. Consider a sequence of assessments {Am} = {gm,Pm} such that each Am is an

ϵ-Revision-Proof equilibrium in Γ∞ and Am → A = {g,P}. Then, A is an ϵ-Revision-Proof

equilibrium in Γ∞.

Proof. First, note that since Am → A = (g,P), the corresponding sets of beliefs Pm

converge to P, hence the consistency condition on beliefs is satisfied. Suppose there is an
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information set I and a strategy hi such that

Vi(I, hi, g−i,P)− Vi(I, g,P) ≥ ϵ+ 3δ,

and for all I ′ that are reachable from I and i makes an announcement, we have

Vi(I ′, hi, g−i,P)− Vi(I ′, g,P) ≥ ϵ.

Because Am → A and the game is uniformly continuous, for any δ, there exists large m

such that

Vi(I, gm,Pm)− Vi(I, g,P) < δ.

Vi(I, hi, g−i,P)− Vi(I, hi, gm−i,Pm) < δ,

and the same inequalities hold for all I ′ that are reachable from I and i makes an announce-

ment.

Combining the three inequalities for I and for I ′, we have

Vi(I, hi, gm−i,Pm)− Vi(I, gm,Pm) > ϵ+ δ,

Vi(I ′, hi, gm−i,Pm)− Vi(I ′, gm,Pm) > ϵ− 2δ.

As δ can be taken to be arbitrarilly small, we can find big enough m so that

Vi(I, hi, gm−i,Pm)− Vi(I, gm,Pm) > ϵ,

Vi(I ′, hi, gm−i,Pm)− Vi(I ′, gm,Pm) ≥ ϵ,

which contradicts that Am is an ϵ-Revision-Proof equilibrium.

Lemma 13. Suppose that there is a sequence {Am} = {gm,Pm} such that Am is an ϵm-

Revision-Proof equilibrium in Γ(m) and, as m → ∞, we have ϵm → 0 and Am → A∗ =

(g∗,P∗). Then, A∗ is a Revision-Proof equilibrium in Γ∞.

Proof. From Lemma 11, Am is an (ϵm+wm)-Revision-Proof equilibrium in the infinite game

Γ∞. Because Γ∞ is uniformly continuous, it is also continuous at infinity and ϵm +wm → 0.

We therefore have that for each δ > 0 there is M such that ϵm +wm < δ, whenever m > M .

From Lemma 12, A∗ is a δ-Revision-Proof equilibrium in the infinite game Γ∞. Since this is

true for every δ > 0, A∗ is a Revision-Proof equilibrium in Γ∞.

Proposition 8. There is a Revision-Proof equilibrium in Γ∞.
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Proof. From Lemma 10, each finite-horizon Γm and therefore Γ(m) has a Revision-Proof

equilibrium Am, for any m < ∞. From Lemma 11, Am is a wm-Revision-Proof equilibrium

in Γ∞. Since A(∞) is compact, there is a subsequence Ak ⊆ Am with Ak → A∗. From

Lemma 13, A∗ is a Revision-Proof equilibrium in Γ∞.
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3 Experimental Instructions

The purpose of this experimental session is to study how people make decisions in a particular

situation. Your earnings will depend upon the decisions you make as well as the decisions

that other people make. At the end of the session, you will be paid in cash your total

earnings. None of the other participants will be informed of your earnings, and likewise you

will not be informed of the earnings of others. Given that nobody will know of each other’s

identity, all the decisions you make during the experimental session will be anonymous.

For your participation in the experimental session, you will receive an initial

payment of 6,000 Experimental Currency Units (ECUs), which will be converted

into euros at an exchange rate of 2,000 ECUs equal e1.

The experimental session consists of 3 parts to be described at the appropriate time.

The instructions are simple. If you have a question, please raise your hand. Aside from

these questions, any communication with other participants or looking at other participants’

screens is not permitted and will lead to your immediate exclusion from the experimental

session.

The instructions are identical to all participants.
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3.1 Part 1

In this part of the study, you are asked to choose one of the five options shown below.

Regardless of which option you choose, there are two possible outcomes (Outcome A and

Outcome B). These outcomes are equally likely for all five options; that is, there is a 50%

chance of Outcome A and a 50% chance of Outcome B, just like the flip of a coin. The

options differ only in how much each outcome pays. The table below tells you how much you

will be paid for each outcome. The computer will randomly choose between Outcome A and

Outcome B at the end of the experimental session. You can imagine the computer flipping a

virtual coin so that the chance of each outcome is equal. You will only find out your outcome

from Part 1 and how much you will be paid for Part 1 at the end of the experimental session.

Please choose your option by clicking on a radio button.

Option Outcome Payoff Probabilities

A 2,000 ECUs 50%
B 2,000 ECUs 50%

A 1,400 ECUs 50%
B 3,500 ECUs 50%

A 1,000 ECUs 50%
B 4,500 ECUs 50%

A 600 ECUs 50%
B 5,500 ECUs 50%

A 200 ECUs 50%
B 6,500 ECUs 50%

1

2

3

4

5
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3.2 Part 2

3.2.1 Red = 30, Green = 30, Blue = 30, Red → High [EUS0]

Recall that the instructions are identical to all participants.

You are about to participate in an experiment about prediction markets. You will spend the

next few minutes learning how to make predictions and how your earnings are calculated.

All values are denominated in Experimental Currency Units (ECUs). With the completion

of this part, your ECUs will be converted into euros at the exchange rate of 2,000 ECUs

equals e1.

In each round, you have at your disposal 1,500 ECUs; that is, in each round you can only

use your starting 1,500 ECUs. There are 12 rounds of game play. Though for the duration

of the round you will be paired with the same participant, in every new round, you will be

matched with a different participant. Within a given round, the pair of participants will

take on the role of traders that take turns (alternate at) predicting the value of the stock.

Specifically, within a given round, first, Trader 1 will provide his prediction for the value

of the stock, then Trader 2 will provide her prediction for the value of the stock, then Trader

1 will provide his prediction for the value of the stock, then Trader 2, and so on and so forth.

Whether or not you are Trader 1 or Trader 2 will be determined by a computer draw at the

beginning of each round. You can imagine the computer flipping a virtual coin so that

the chance of each outcome is equal.

How many predictions within a given round will the two traders report? Again, this is de-

termined by a computer draw. Specifically, after the report of each prediction, the computer

will draw an integer from 1 to 100 (all inclusive), where each integer has the same probability

of being drawn. If the computer draws an integer below or equal to 95, then there will be

one more prediction in the round; otherwise, if the computer draws an integer above 95,

then the round ends. Thus, after each prediction, there is 95% chance that there will be one

more prediction in the round, and 5% chance that there will be no other prediction and the

round will end.

Your prediction for the value of the stock can be any integer from 0 to 100.

To help you decide on your prediction, we will provide next the payoff functions and some

information about the value of the stock.
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Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

Let’s look at these payoff functions more closely.

When the value of the stock is high, assuming you just reported, then your prediction must

exceed that of the previous trader’s reported prediction to make profits. Why? (100 −
your prediction)2 is smaller than (100 − previous trader′s reported prediction)2 precisely

because your prediction is a bigger number than the previous trader’s reported prediction.

Therefore, 0.01[(100−previous trader′s reported prediction)2− (100−your prediction)2] >

0. Otherwise, when the value of the stock is high, and your prediction is less than that of

the previous trader’s reported prediction, you will make losses.

When the value of the stock is low, the opposite is true. Assuming you just reported, then

your prediction must be less than that of the previous trader’s reported prediction to make

profits. Otherwise, when the value of the stock is low, and your prediction exceeds that of

the previous trader’s reported prediction, you will make losses.

To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.

To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock
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value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: 30 red balls, 30 green balls, and 30 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is low.

• If the drawn ball is blue, then the stock value is again low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.

If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.

If the drawn ball is green (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.

If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.
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This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

Examples

For all the calculations in the examples, assume the following.

Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.
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To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock

value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: 30 red balls, 30 green balls, and 30 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is low.

• If the drawn ball is blue, then the stock value is again low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.

If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.
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If the drawn ball is green (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.

If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.

This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

1. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 50.00, and yours is 60.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? −11.00 ECUs

2. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 55.00, and yours is 35.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? 18.00 ECUs

3. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 67.00, and yours is 72.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? −6.95 ECUs

4. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 77.00, and yours is 22.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? 54.45 ECUs
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Quiz

For the calculations, use the calculator provided in the bottom left portion of this screen.

Press the icon and the calculator will become live. To use the scientific calculator, press view

and choose the scientific calculator. Provide your numerical answers to two decimal places.

Recall that:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

A colored ball (red, green, or blue) is drawn by the computer from a virtual urn. The color

of the drawn ball will determine the value of the stock; that is, whether the stock has a high

value or low value. The virtual urn contains 90 balls: 30 red balls, 30 green balls, and 30

blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is low.

• If the drawn ball is blue, then the stock value is again low.

We provide the two traders with some private information about the draw. This information

is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green
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1. How many rounds of game play are there? 12.00

2. During the duration of the round, you will be matched with the same individual. Yes

3. In each round, you will be matched with the same individual. No

4. To determine whether there will be another prediction in the round, the computer draws

integer 27. Is there going to be another prediction in the round? Yes

5. To determine whether there will be another prediction in the round, the computer draws

integer 96. Is there going to be another prediction in the round? No

6. The round payoff is determined at the very end of the round, when the value of the stock

is revealed to you. Yes

7. If your round payoff turns out to be negative, then we will zero your round payoff for that

round. Yes

8. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 57.00, and yours is 82.00. What is

your payoff for this prediction? −34.75 ECUs

9. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 57.00, and yours is 85.00. What

is your payoff for this prediction? −39.76 ECUs

10. In the beginning of the round, you, as Trader 1, received private information that the

ball is not blue. Suppose that Trader 2’s previous prediction was 40.00, and yours is also

40.00. What is your payoff for this prediction? 0.00 ECUs

11. In the beginning of the round, you, as Trader 2, received private information that the

ball is green. Suppose that Trader 1’s previous prediction was 40.00, and yours is 50.00.

What is your payoff for this prediction? −9.00 ECUs
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12. In the beginning of the round, you, as Trader 1, received private information that

the ball is blue. Suppose that your very first prediction is 30.00. What is your payoff for

this prediction? −9.00 ECUs [The initial value of 0 was changed to 50 in the other set of

treatments, which yields 16.00 ECUs.]

13. Suppose that the color of the ball is revealed to you at the end of the round, and you

earned the following payoffs for your predictions within the round: 15.00, −10.00, 25.00,

40.00, 10.00. Recall that in the beginning of each round you are provided with 1,500 ECUs.

What is your round payoff? 1,580.00 ECUs

14. Suppose that in the 12 rounds, you earned the following round payoffs: 1,500, 1,000,

2,000, 1,500, 1,000, 1,000, 1,000, 1,000, 1,000, 1,000, 2,000, 2,000. What is your final payoff?

16,000.00 ECUs

15. If you earned 16,000 ECUs in the 12 rounds, your final payoff in euros is what? e8.00
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3.2.2 0 ≤ Red ≤ 30, 20 ≤ Green ≤ 70, 20 ≤ Blue ≤ 70, Red → High [AmbS0]

Recall that the instructions are identical to all participants.

You are about to participate in an experiment about prediction markets. You will spend the

next few minutes learning how to make predictions and how your earnings are calculated.

All values are denominated in Experimental Currency Units (ECUs). With the completion

of this part, your ECUs will be converted into euros at the exchange rate of 2,000 ECUs

equals e1.

In each round, you have at your disposal 1,500 ECUs; that is, in each round you can only

use your starting 1,500 ECUs. There are 12 rounds of game play. Though for the duration

of the round you will be paired with the same participant, in every new round, you will be

matched with a different participant. Within a given round, the pair of participants will

take on the role of traders that take turns (alternate at) predicting the value of the stock.

Specifically, within a given round, first, Trader 1 will provide his prediction for the value

of the stock, then Trader 2 will provide her prediction for the value of the stock, then Trader

1 will provide his prediction for the value of the stock, then Trader 2, and so on and so forth.

Whether or not you are Trader 1 or Trader 2 will be determined by a computer draw at the

beginning of each round. You can imagine the computer flipping a virtual coin so that

the chance of each outcome is equal.

How many predictions within a given round will the two traders report? Again, this is de-

termined by a computer draw. Specifically, after the report of each prediction, the computer

will draw an integer from 1 to 100 (all inclusive), where each integer has the same probability

of being drawn. If the computer draws an integer below or equal to 95, then there will be

one more prediction in the round; otherwise, if the computer draws an integer above 95,

then the round ends. Thus, after each prediction, there is 95% chance that there will be one

more prediction in the round, and 5% chance that there will be no other prediction and the

round will end.

Your prediction for the value of the stock can be any integer from 0 to 100.

To help you decide on your prediction, we will provide next the payoff functions and some

information about the value of the stock.
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Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

Let’s look at these payoff functions more closely.

When the value of the stock is high, assuming you just reported, then your prediction must

exceed that of the previous trader’s reported prediction to make profits. Why? (100 −
your prediction)2 is smaller than (100 − previous trader′s reported prediction)2 precisely

because your prediction is a bigger number than the previous trader’s reported prediction.

Therefore, 0.01[(100−previous trader′s reported prediction)2− (100−your prediction)2] >

0. Otherwise, when the value of the stock is high, and your prediction is less than that of

the previous trader’s reported prediction, you will make losses.

When the value of the stock is low, the opposite is true. Assuming you just reported, then

your prediction must be less than that of the previous trader’s reported prediction to make

profits. Otherwise, when the value of the stock is low, and your prediction exceeds that of

the previous trader’s reported prediction, you will make losses.

To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.

To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock
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value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: between 0 and 30 red balls, between 20 and 70 green balls,

and between 20 and 70 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is low.

• If the drawn ball is blue, then the stock value is again low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.

If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.

If the drawn ball is green (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.
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If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.

This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

Examples

For all the calculations in the examples, assume the following.

Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].
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To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.

To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock

value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: between 0 and 30 red balls, between 20 and 70 green balls,

and between 20 and 70 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is low.

• If the drawn ball is blue, then the stock value is again low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.
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If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.

If the drawn ball is green (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.

If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.

This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

1. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 50.00, and yours is 60.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? −11.00 ECUs

2. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 55.00, and yours is 35.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? 18.00 ECUs

3. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 67.00, and yours is 72.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? −6.95 ECUs
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4. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 77.00, and yours is 22.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? 54.45 ECUs

Quiz

For the calculations, use the calculator provided in the bottom left portion of this screen.

Press the icon and the calculator will become live. To use the scientific calculator, press view

and choose the scientific calculator. Provide your numerical answers to two decimal places.

Recall that:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

A colored ball (red, green, or blue) is drawn by the computer from a virtual urn. The color

of the drawn ball will determine the value of the stock; that is, whether the stock has a high

value or low value. The virtual urn contains 90 balls: between 0 and 30 red balls, between

20 and 70 green balls, and between 20 and 70 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is low.

• If the drawn ball is blue, then the stock value is again low.

We provide the two traders with some private information about the draw. This information

is presented in a tabular form.
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Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

1. How many rounds of game play are there? 12.00

2. During the duration of the round, you will be matched with the same individual. Yes

3. In each round, you will be matched with the same individual. No

4. To determine whether there will be another prediction in the round, the computer draws

integer 27. Is there going to be another prediction in the round? Yes

5. To determine whether there will be another prediction in the round, the computer draws

integer 96. Is there going to be another prediction in the round? No

6. The round payoff is determined at the very end of the round, when the value of the stock

is revealed to you. Yes

7. If your round payoff turns out to be negative, then we will zero your round payoff for that

round. Yes

8. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 57.00, and yours is 82.00. What is

your payoff for this prediction? −34.75 ECUs

9. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 57.00, and yours is 85.00. What

is your payoff for this prediction? −39.76 ECUs
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10. In the beginning of the round, you, as Trader 1, received private information that the

ball is not blue. Suppose that Trader 2’s previous prediction was 40.00, and yours is also

40.00. What is your payoff for this prediction? 0.00 ECUs

11. In the beginning of the round, you, as Trader 2, received private information that the

ball is green. Suppose that Trader 1’s previous prediction was 40.00, and yours is 50.00.

What is your payoff for this prediction? −9.00 ECUs

12. In the beginning of the round, you, as Trader 1, received private information that

the ball is blue. Suppose that your very first prediction is 30.00. What is your payoff for

this prediction? −9.00 ECUs [The initial value of 0 was changed to 50 in the other set of

treatments, which yields 16.00 ECUs.]

13. Suppose that the color of the ball is revealed to you at the end of the round, and you

earned the following payoffs for your predictions within the round: 15.00, −10.00, 25.00,

40.00, 10.00. Recall that in the beginning of each round you are provided with 1,500 ECUs.

What is your round payoff? 1,580.00 ECUs

14. Suppose that in the 12 rounds, you earned the following round payoffs: 1,500, 1,000,

2,000, 1,500, 1,000, 1,000, 1,000, 1,000, 1,000, 1,000, 2,000, 2,000. What is your final payoff?

16,000.00 ECUs

15. If you earned 16,000 ECUs in the 12 rounds, your final payoff in euros is what? e8.00
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3.2.3 Red = 30, Green = 30, Blue = 30, Red & Green → High [EUStS0]

Recall that the instructions are identical to all participants.

You are about to participate in an experiment about prediction markets. You will spend the

next few minutes learning how to make predictions and how your earnings are calculated.

All values are denominated in Experimental Currency Units (ECUs). With the completion

of this part, your ECUs will be converted into euros at the exchange rate of 2,000 ECUs

equals e1.

In each round, you have at your disposal 1,500 ECUs; that is, in each round you can only

use your starting 1,500 ECUs. There are 12 rounds of game play. Though for the duration

of the round you will be paired with the same participant, in every new round, you will be

matched with a different participant. Within a given round, the pair of participants will

take on the role of traders that take turns (alternate at) predicting the value of the stock.

Specifically, within a given round, first, Trader 1 will provide his prediction for the value

of the stock, then Trader 2 will provide her prediction for the value of the stock, then Trader

1 will provide his prediction for the value of the stock, then Trader 2, and so on and so forth.

Whether or not you are Trader 1 or Trader 2 will be determined by a computer draw at the

beginning of each round. You can imagine the computer flipping a virtual coin so that

the chance of each outcome is equal.

How many predictions within a given round will the two traders report? Again, this is de-

termined by a computer draw. Specifically, after the report of each prediction, the computer

will draw an integer from 1 to 100 (all inclusive), where each integer has the same probability

of being drawn. If the computer draws an integer below or equal to 95, then there will be

one more prediction in the round; otherwise, if the computer draws an integer above 95,

then the round ends. Thus, after each prediction, there is 95% chance that there will be one

more prediction in the round, and 5% chance that there will be no other prediction and the

round will end.

Your prediction for the value of the stock can be any integer from 0 to 100.

To help you decide on your prediction, we will provide next the payoff functions and some

information about the value of the stock.
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Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

Let’s look at these payoff functions more closely.

When the value of the stock is high, assuming you just reported, then your prediction must

exceed that of the previous trader’s reported prediction to make profits. Why? (100 −
your prediction)2 is smaller than (100 − previous trader′s reported prediction)2 precisely

because your prediction is a bigger number than the previous trader’s reported prediction.

Therefore, 0.01[(100−previous trader′s reported prediction)2− (100−your prediction)2] >

0. Otherwise, when the value of the stock is high, and your prediction is less than that of

the previous trader’s reported prediction, you will make losses.

When the value of the stock is low, the opposite is true. Assuming you just reported, then

your prediction must be less than that of the previous trader’s reported prediction to make

profits. Otherwise, when the value of the stock is low, and your prediction exceeds that of

the previous trader’s reported prediction, you will make losses.

To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.

To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock
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value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: 30 red balls, 30 green balls, and 30 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is again high.

• If the drawn ball is blue, then the stock value is low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.

If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.

If the drawn ball is green (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.

If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.
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This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

Examples

For all the calculations in the examples, assume the following.

Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.
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To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock

value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: 30 red balls, 30 green balls, and 30 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is again high.

• If the drawn ball is blue, then the stock value is low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.

If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.
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If the drawn ball is green (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.

If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.

This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

1. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 50.00, and yours is 60.00. Is the

value of the stock low or high? High What is your payoff for this prediction? 9.00 ECUs

2. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 55.00, and yours is 35.00. Is the

value of the stock low or high? High What is your payoff for this prediction? −22.00 ECUs

3. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 67.00, and yours is 72.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? −6.95 ECUs

4. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 77.00, and yours is 22.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? 54.45 ECUs
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Quiz

For the calculations, use the calculator provided in the bottom left portion of this screen.

Press the icon and the calculator will become live. To use the scientific calculator, press view

and choose the scientific calculator. Provide your numerical answers to two decimal places.

Recall that:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

A colored ball (red, green, or blue) is drawn by the computer from a virtual urn. The color

of the drawn ball will determine the value of the stock; that is, whether the stock has a high

value or low value. The virtual urn contains 90 balls: 30 red balls, 30 green balls, and 30

blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is again high.

• If the drawn ball is blue, then the stock value is low.

We provide the two traders with some private information about the draw. This information

is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green
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1. How many rounds of game play are there? 12.00

2. During the duration of the round, you will be matched with the same individual. Yes

3. In each round, you will be matched with the same individual. No

4. To determine whether there will be another prediction in the round, the computer draws

integer 27. Is there going to be another prediction in the round? Yes

5. To determine whether there will be another prediction in the round, the computer draws

integer 96. Is there going to be another prediction in the round? No

6. The round payoff is determined at the very end of the round, when the value of the stock

is revealed to you. Yes

7. If your round payoff turns out to be negative, then we will zero your round payoff for that

round. Yes

8. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 57.00, and yours is 82.00. What is

your payoff for this prediction? −34.75 ECUs

9. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 57.00, and yours is 85.00. What

is your payoff for this prediction? 16.24 ECUs

10. In the beginning of the round, you, as Trader 1, received private information that the

ball is not blue. Suppose that Trader 2’s previous prediction was 40.00, and yours is also

40.00. What is your payoff for this prediction? 0.00 ECUs

11. In the beginning of the round, you, as Trader 2, received private information that the

ball is green. Suppose that Trader 1’s previous prediction was 40.00, and yours is 50.00.

What is your payoff for this prediction? 11.00 ECUs
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12. In the beginning of the round, you, as Trader 1, received private information that

the ball is blue. Suppose that your very first prediction is 30.00. What is your payoff for

this prediction? −9.00 ECUs [The initial value of 0 was changed to 50 in the other set of

treatments, which yields 16.00 ECUs.]

13. Suppose that the color of the ball is revealed to you at the end of the round, and you

earned the following payoffs for your predictions within the round: 15.00, −10.00, 25.00,

40.00, 10.00. Recall that in the beginning of each round you are provided with 1,500 ECUs.

What is your round payoff? 1,580.00 ECUs

14. Suppose that in the 12 rounds, you earned the following round payoffs: 1,500, 1,000,

2,000, 1,500, 1,000, 1,000, 1,000, 1,000, 1,000, 1,000, 2,000, 2,000. What is your final payoff?

16,000.00 ECUs

15. If you earned 16,000 ECUs in the 12 rounds, your final payoff in euros is what? e8.00
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3.2.4 1 ≤ Red ≤ 30, 20 ≤ Green ≤ 69, 20 ≤ Blue ≤ 69, Red & Green → High

[AmbStS0]

Recall that the instructions are identical to all participants.

You are about to participate in an experiment about prediction markets. You will spend the

next few minutes learning how to make predictions and how your earnings are calculated.

All values are denominated in Experimental Currency Units (ECUs). With the completion

of this part, your ECUs will be converted into euros at the exchange rate of 2,000 ECUs

equals e1.

In each round, you have at your disposal 1,500 ECUs; that is, in each round you can only

use your starting 1,500 ECUs. There are 12 rounds of game play. Though for the duration

of the round you will be paired with the same participant, in every new round, you will be

matched with a different participant. Within a given round, the pair of participants will

take on the role of traders that take turns (alternate at) predicting the value of the stock.

Specifically, within a given round, first, Trader 1 will provide his prediction for the value

of the stock, then Trader 2 will provide her prediction for the value of the stock, then Trader

1 will provide his prediction for the value of the stock, then Trader 2, and so on and so forth.

Whether or not you are Trader 1 or Trader 2 will be determined by a computer draw at the

beginning of each round. You can imagine the computer flipping a virtual coin so that

the chance of each outcome is equal.

How many predictions within a given round will the two traders report? Again, this is de-

termined by a computer draw. Specifically, after the report of each prediction, the computer

will draw an integer from 1 to 100 (all inclusive), where each integer has the same probability

of being drawn. If the computer draws an integer below or equal to 95, then there will be

one more prediction in the round; otherwise, if the computer draws an integer above 95,

then the round ends. Thus, after each prediction, there is 95% chance that there will be one

more prediction in the round, and 5% chance that there will be no other prediction and the

round will end.

Your prediction for the value of the stock can be any integer from 0 to 100.

To help you decide on your prediction, we will provide next the payoff functions and some

information about the value of the stock.
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Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

Let’s look at these payoff functions more closely.

When the value of the stock is high, assuming you just reported, then your prediction must

exceed that of the previous trader’s reported prediction to make profits. Why? (100 −
your prediction)2 is smaller than (100 − previous trader′s reported prediction)2 precisely

because your prediction is a bigger number than the previous trader’s reported prediction.

Therefore, 0.01[(100−previous trader′s reported prediction)2− (100−your prediction)2] >

0. Otherwise, when the value of the stock is high, and your prediction is less than that of

the previous trader’s reported prediction, you will make losses.

When the value of the stock is low, the opposite is true. Assuming you just reported, then

your prediction must be less than that of the previous trader’s reported prediction to make

profits. Otherwise, when the value of the stock is low, and your prediction exceeds that of

the previous trader’s reported prediction, you will make losses.

To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.

To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock
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value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: between 1 and 30 red balls, between 20 and 69 green balls,

and between 20 and 69 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is again high.

• If the drawn ball is blue, then the stock value is low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.

If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.

If the drawn ball is green (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.
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If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.

This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

Examples

For all the calculations in the examples, assume the following.

Payoff Functions

The stock has either a high value or low value.

Your payoff depends on (a) the stock value (high or low), (b) your prediction,

and (c) the previous trader’s reported prediction.

Specifically:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].
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To make neither losses nor profits (i.e. a payoff of 0), you simply need to replicate the choice

of the previous trader’s reported prediction.

To calculate the payoff of Trader 1’s very first prediction, we assume that the previous

trader’s reported prediction is 0. [The initial value of 0 was changed to 50 in the other set of

treatments.]

The round payoff is the summation of all the payoffs of the trader in the round. Crucially,

the round payoff will be determined at the end of the round, when the stock

value is revealed to you. Recall further that in the beginning of the round, you have at

your disposal 1,500 ECUs. It is possible that based on the payoffs of your predictions in the

round, your funds will go down to zero or even negative. If your round payoff is a negative

number, then we will zero your round payoff for that round. In the new round, you will be

given once again your starting 1,500 ECUs. The final payoff is the summation of all the

round payoffs of the trader in the 12 rounds played.

In summary, in order to make profits, when the value of the stock is high, your prediction

must exceed that of the previous trader’s reported prediction, and when the value of the stock

is low, your prediction must be less than that of the previous trader’s reported prediction.

Information

At the beginning of each round a colored ball (red, green, or blue) is drawn by the computer

from a virtual urn. The color of the drawn ball will determine the value of the stock; that

is, whether the stock has a high value or low value. Furthermore, the color of the ball

will not be revealed to you until the end of the round.

The virtual urn contains 90 balls: between 1 and 30 red balls, between 20 and 69 green balls,

and between 20 and 69 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is again high.

• If the drawn ball is blue, then the stock value is low.

Importantly, we will provide the two traders with some private information about the draw.

This information is different across the two traders.
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If the drawn ball is red (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

not green.

If the drawn ball is green (hence, the value of the stock is high): Trader 1 will be informed

that the drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is

green.

If the drawn ball is blue (hence, the value of the stock is low): Trader 1 will be informed

that the drawn ball is blue, whereas Trader 2 will be informed that the drawn ball is not

green.

This information is presented in a tabular form.

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Recall that the color of the ball (hence, whether the stock value is low or high)

will be revealed to you at the end of the round. The round payoff will then be

determined.

1. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 50.00, and yours is 60.00. Is the

value of the stock low or high? High What is your payoff for this prediction? 9.00 ECUs

2. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 55.00, and yours is 35.00. Is the

value of the stock low or high? High What is your payoff for this prediction? −22.00 ECUs

3. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 67.00, and yours is 72.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? −6.95 ECUs
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4. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 77.00, and yours is 22.00. Is the

value of the stock low or high? Low What is your payoff for this prediction? 54.45 ECUs

Quiz

For the calculations, use the calculator provided in the bottom left portion of this screen.

Press the icon and the calculator will become live. To use the scientific calculator, press view

and choose the scientific calculator. Provide your numerical answers to two decimal places.

Recall that:

• When the value of the stock is high, your payoff is:

0.01[(100− previous trader′s reported prediction)2 − (100− your prediction)2].

• When the value of the stock is low, your payoff is:

0.01[(previous trader′s reported prediction)2 − (your prediction)2].

A colored ball (red, green, or blue) is drawn by the computer from a virtual urn. The color

of the drawn ball will determine the value of the stock; that is, whether the stock has a high

value or low value. The virtual urn contains 90 balls: between 1 and 30 red balls, between

20 and 69 green balls, and between 20 and 69 blue balls.

• If the drawn ball is red, then the stock value is high.

• If the drawn ball is green, then the stock value is again high.

• If the drawn ball is blue, then the stock value is low.

We provide the two traders with some private information about the draw. This information

is presented in a tabular form.

1. How many rounds of game play are there? 12.00

2. During the duration of the round, you will be matched with the same individual. Yes
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Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

3. In each round, you will be matched with the same individual. No

4. To determine whether there will be another prediction in the round, the computer draws

integer 27. Is there going to be another prediction in the round? Yes

5. To determine whether there will be another prediction in the round, the computer draws

integer 96. Is there going to be another prediction in the round? No

6. The round payoff is determined at the very end of the round, when the value of the stock

is revealed to you. Yes

7. If your round payoff turns out to be negative, then we will zero your round payoff for that

round. Yes

8. In the beginning of the round, you, as Trader 1, received private information that the ball

is blue. Suppose that Trader 2’s previous prediction was 57.00, and yours is 82.00. What is

your payoff for this prediction? −34.75 ECUs

9. In the beginning of the round, you, as Trader 2, received private information that the ball

is green. Suppose that Trader 1’s previous prediction was 57.00, and yours is 85.00. What

is your payoff for this prediction? 16.24 ECUs

10. In the beginning of the round, you, as Trader 1, received private information that the

ball is not blue. Suppose that Trader 2’s previous prediction was 40.00, and yours is also

40.00. What is your payoff for this prediction? 0.00 ECUs
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11. In the beginning of the round, you, as Trader 2, received private information that the

ball is green. Suppose that Trader 1’s previous prediction was 40.00, and yours is 50.00.

What is your payoff for this prediction? 11.00 ECUs

12. In the beginning of the round, you, as Trader 1, received private information that

the ball is blue. Suppose that your very first prediction is 30.00. What is your payoff for

this prediction? −9.00 ECUs [The initial value of 0 was changed to 50 in the other set of

treatments, which yields 16.00 ECUs.]

13. Suppose that the color of the ball is revealed to you at the end of the round, and you

earned the following payoffs for your predictions within the round: 15.00, −10.00, 25.00,

40.00, 10.00. Recall that in the beginning of each round you are provided with 1,500 ECUs.

What is your round payoff? 1,580.00 ECUs

14. Suppose that in the 12 rounds, you earned the following round payoffs: 1,500, 1,000,

2,000, 1,500, 1,000, 1,000, 1,000, 1,000, 1,000, 1,000, 2,000, 2,000. What is your final payoff?

16,000.00 ECUs

15. If you earned 16,000 ECUs in the 12 rounds, your final payoff in euros is what? e8.00
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3.3 Part 3

In this part of the study, you will complete a questionnaire. The questionnaire asks you to

answer some questions about yourself. Please note that your individual data will be kept

strictly confidential.

1. What is your age?

2. What is your gender?

Male

Female

3. What is your degree in?
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