We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences


Publication details for Dr Wayne Dawson

Song, Y.-B., Yu, F.-H. Keser, L.H., Dawson, W., Fischer, M., Dong, M. & van Kleunen, M. (2013). United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171(2): 317-327.

Author(s) from Durham


Many ecosystems are dominated by clonal plants. Among the most distinctive characteristics of clonal plants is their potential for clonal integration (i.e. the translocation of resources between interconnected ramets), suggesting that integration may play a role in their success. However, a general synthesis of effects of clonal integration on plant performance is lacking. We conducted a meta-analysis on the effects of clonal integration on biomass production and asexual reproduction of the whole clone, the recipient part (i.e. the part of a clone that imports resources) and the donor part (i.e. the part of a clone that exports resources). The final dataset contained 389 effect sizes from 84 studies covering 57 taxa. Overall, clonal integration increased performance of recipient parts without decreasing that of donor parts, and thus increased performance of whole clones. Among the studies and taxa considered, the benefits of clonal integration did not differ between two types of experimental approaches, between stoloniferous and rhizomatous growth forms, between directions of resource translocation (from younger to older ramet or vice versa), or among types of translocated resources (water, nutrients and carbohydrates). Clonal taxa with larger benefits of integration on whole-clone performance were not more invasive globally, but taxa in which recipient parts in unfavorable patches benefited more from integration were. Our results demonstrate general performance benefits of clonal integration, at least in the short term, and suggest that clonal integration contributes to the success of clonal plants.