Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Anthropology

Academic Staff

Publication details for Dr Kris (Fire) Kovarovic

Kovarovic, K., Aiello, L.C., Cardini, A. & Lockwood, C.A. (2011). Discriminant Function Analyses In Archaeology: Are Classification Rates Too Good To Be True? Journal of Archaeological Science 38(11): 3006-3018.

Author(s) from Durham

Abstract

The use of discriminant function analyses (DFA) in archaeological and related research is on the increase, however many of the assumptions of this method receive a mixed treatment in the literature. Statisticians frequently use complex statistical models to investigate analytical parameters, but such idealised datasets may be hard to relate to “real-life” examples and the literature difficult to assess. Using two faunal datasets that are more typical of archaeological and related research, one comprised of size-corrected linear measurements of bovid humeri and another of 3D geometric morphometric (GMM) shape data of African monkey skulls, and two simulated datasets, we illustrate some of the most important but often ignored issues of DFA. We specifically show why it is paramount to address “over-fitting” by cross-validation when applying this method and how the probability of correctly classifying cases by chance can be properly and explicitly taken into account.